
HWpack Requirements

Contents1

Concepts 22

Image Building Stages . 23

OSpack . 24

HWpack . 35

Apertis packages . 36

Typical Apertis OS layout . 47

HWpack Components 58

Bootloader . 59

Linux Kernel . 510

Firmware . 611

Debos .yaml configuration . 612

Documentation . 713

Testing 714

Licensing 715

This documentation covers the requirements and considerations that should be16

taken into account when implementing “hardware packs” for the Apertis project.17

Concepts18

This section briefly covers the concepts and expectations of the Apertis platform.19

Image Building Stages20

Apertis images are built from binary packages, packaged in the .deb format.21

Building these packages is expected to be carried out from source by the Apertis22

infrastructure, ensuring all packages dependencies are properly described and23

reducing the risk of unexpected dependencies.24

The selection and packaging of these packages are predominantly driven by the25

needs of the two main process steps required to create images, known as the26

OSpack and HWpack.27

OSpack28

The OSpack stage generates one or more generic (architecture specific but29

largely hardware independent) archived rootfs built from Apertis packages.30

These rootfs archives are known as OSpacks. The process is managed by a31

tool called Debos1, which uses yaml configuration files to guide what steps32

it takes. Apertis provides yaml files to assemble a number of differently tar-33

geted OSpacks, ranging from a minimal GUI-less OSpack, a target focused GUI34

1https://github.com/go-debos/debos

2

https://github.com/go-debos/debos
https://github.com/go-debos/debos

OSpack and a development environment with a desktop style GUI and has pre-35

packaged the components required to generate these OSpacks.36

OSpackDebos

Ospack
Configuration

Apertis
Packages

+

37

HWpack38

Unlike the OSpack step, the hardware package (HWpack) step does not result39

in an item known as a HWpack. The HWpack is comprised of a Debos script40

which controls the processing of a run time determined OSpack to convert it41

from a hardware independent OSpack into an image which can be successfully42

booted on a specific hardware platform. In addition to developing the HWpack43

script, the HWpack step requires the modification and packaging of the required44

components to perform this transformation.45

Debos Apertis
Image

HWpack
Configuration

Apertis
Packages

OSpack

+

+

46

3

Apertis packages47

Apertis standardizes on a specific set of components (with specific versions) and48

technologies to fulfill the needs of the target platforms. This maximizes sharing49

and reuse, thus minimizing effort and cost of maintaining common components50

across products. Deviations from the standard selection may be needed to ac-51

commodate product-specific needs but such deviations tend to reduce reuse and52

thus increase the long-term maintenance efforts. It will likely fall on the product53

team in question to carry this added effort. As a result, it is strongly preferred54

for deviations to be minimized with generic improvements and additions made55

to the standard components to add the required functionality where possible.56

The components selected as part of the base Apertis system need to meet a57

number of project criteria.58

Licensing requirements Components need to be licensed in such a way that59

they are acceptable for distribution in target devices. For example, GPL-360

is problematic and thus avoided.61

Software revisions The specific revisions of the packages are picked to bal-62

ance the competing customer needs of having up-to-date versions (and63

thus features), stability and the need for a strong security road map.64

Close to upstream Apertis aims to remain relatively close to its upstreams65

(where the majority of packages are based on Debian stable, the kernel66

on the latest LTS release). This minimizes the effort required to migrate67

to newer versions as it means there are minimal patches to port. A large68

deviation from upstream also decreases effectiveness of testing and the69

validity of review performed on upstream versions.70

These are some of the key packages from which the Apertis system is built:71

• U-Boot/systemd-boot72

• Linux kernel73

• systemd74

• Apparmor75

• Wayland76

• Mesa77

• PulseAudio78

All Apertis packages are packaged using standard Debian packaging, with source79

code and package configuration stored in the Apertis GitLab enabling automa-80

tion of the package build process.81

Typical Apertis OS layout82

The reference Apertis images share a common layout per architecture, enabling83

images to be shared across the various supported platforms of each architecture:84

• Bootloader typically stored in flash85

4

• Kernel and other boot components and configuration stored on rootfs86

(enabling current update mechanism)87

• OSTree used as part of update strategy and rollback (non-OSTree options88

available for development)89

It is expected that the requirements and practicalities of products based on90

Apertis will require deviations to be made from this layout. Such deviations91

however should be carefully considered. Some, such as storing the bootloader92

at the beginning of the same medium as the rootfs, carry very little impact as93

far as the functionality of Apertis is concerned. Others such as using a different94

bootloader, storing the kernel outside of the rootfs or using a different update95

strategy (such as A/B partitioning) may pose in a non-trivial effort for inte-96

gration, loss of some Apertis functionality and/or extra on-going maintenance97

effort.98

The OSpack is expected to contain common functionality to enable use of sup-99

ported hardware, for example the OSpacks which are intended to be used with100

an operational graphical environment include Wayland, though the hardware101

specific drivers are in the HWpacks. When enabling new types of functional-102

ity, it is expected that generic support would be added to the OSpacks where103

applicable. If such functionality is widely used, this should be integrated into104

the Apertis OSpacks. Support for niche functionality, or functionality not of105

general interest to Apertis, will need to be added to a product specific OSpack.106

HWpack Components107

As with the OSpack (and unless specific exceptions provided) all components108

should be properly packaged and provided with source to enable debugging,109

extension and further optimization. It is expected that some changes may be110

viable to be included in the main Apertis packages, some packages may be added111

to the main Apertis package repositories and others will need bespoke packages112

which would typically be stored in a dedicated project area, as described in113

the contribution process2 document. It is typical for the following areas to114

need modifications or to be provided, though other modifications may also be115

required.116

Bootloader117

Apertis standardizes on the U-Boot as the bootloader on all non-x86 platforms.118

In order to support the standard Apertis boot, update and rollback functionality119

it is necessary for the configuration to include the “Generic Distro Configuration120

Concept3” (often referred to as “Distro Boot”). The configuration used by this121

mechanism has been tweaked to work with Apertis rollback mechanisms.122

2https://sjoerd.pages.apertis.org/apertis-website/policies/contributions/
3https://gitlab.apertis.org/pkg/target/u-boot/blob/apertis/v2020pre/doc/README.

distro

5

https://sjoerd.pages.apertis.org/apertis-website/policies/contributions/
https://gitlab.apertis.org/pkg/target/u-boot/blob/apertis/v2020pre/doc/README.distro
https://gitlab.apertis.org/pkg/target/u-boot/blob/apertis/v2020pre/doc/README.distro
https://gitlab.apertis.org/pkg/target/u-boot/blob/apertis/v2020pre/doc/README.distro
https://sjoerd.pages.apertis.org/apertis-website/policies/contributions/
https://gitlab.apertis.org/pkg/target/u-boot/blob/apertis/v2020pre/doc/README.distro
https://gitlab.apertis.org/pkg/target/u-boot/blob/apertis/v2020pre/doc/README.distro

In order to enable efficient development, it would be advisable to ensure that123

access to the boot prompt is enabled along with networking support and the124

PXE and DHCP boot options where applicable. (Note: U-Boot can supports125

networking via a USB RNDIS gadget should a USB On-The-Go (USB OTG)126

port be available.)127

Linux Kernel128

Apertis expects projects that using it have a need to take product security129

seriously, as a result known kernel vulnerabilities need to be patched and updates130

made available. Apertis uses and tracks the latest upstream longterm4 stable131

(LTS) kernel available at time of a release being made. The Apertis project132

strongly recommends that when products use their own kernel, these are kept133

as close to the upstream kernel as possible and preferably based on an LTS134

kernel.135

It is understood that in some circumstances it may be necessary to utilize a136

heavily modified “vendor kernel”. Please note that these kernels are typically137

not provided with any form of long-term support and thus may quickly lack138

important security and stability fixes. Unless otherwise agreed, the burden of139

supporting such kernels will remain with the product team. Likewise, in addition140

to lacking a source of security fixes, many older kernels are known to have serious141

vulnerabilities that can only be fully resolved/mitigated by updating to a newer142

kernel. Apertis strongly discourages the use of such kernels.143

The Apertis kernel contains a number of modifications primarily to enhance the144

Apparmor support provided by the upstream kernel. The patches used by the145

stock Apertis kernel can be found in the Apertis GitLab5. In order to support146

Apertis’ use of Apparmor, a kernel needs to support the following Apparmor147

mediations:148

• file149

• ptrace150

• signal151

• dbus152

• network153

• capability154

• mount155

• umount156

• namespaces157

Additionally, the kernel should be configured to support the functionality re-158

quired by systemd6.159

4https://www.kernel.org/category/releases.html
5https://gitlab.apertis.org/pkg/target/linux/tree/apertis/v2020pre/debian/patches/

apparmor
6https://gitlab.apertis.org/pkg/target/systemd/blob/apertis/v2020pre/README

6

https://www.kernel.org/category/releases.html
https://gitlab.apertis.org/pkg/target/linux/tree/apertis/v2020pre/debian/patches/apparmor
https://gitlab.apertis.org/pkg/target/systemd/blob/apertis/v2020pre/README
https://gitlab.apertis.org/pkg/target/systemd/blob/apertis/v2020pre/README
https://gitlab.apertis.org/pkg/target/systemd/blob/apertis/v2020pre/README
https://www.kernel.org/category/releases.html
https://gitlab.apertis.org/pkg/target/linux/tree/apertis/v2020pre/debian/patches/apparmor
https://gitlab.apertis.org/pkg/target/linux/tree/apertis/v2020pre/debian/patches/apparmor
https://gitlab.apertis.org/pkg/target/systemd/blob/apertis/v2020pre/README

For development purposes, the kernel should provide early serial debugging and160

be capable of booting from an NFS rootfs.161

Firmware162

It is understood that many hardware platforms may need firmware, provided163

by the vendor as binaries, to use certain functionality provided by the device.164

It is still expected that such firmware is packaged as a deb package, though it is165

understood that source will not be available for such components. The Apertis166

infrastructure should still be used to build the binary packages.167

Debos .yaml configuration168

Apertis uses Debos to automate the conversion of binary packages into images169

suitable for installation on specific targets in several stages. The configuration170

used for the Apertis reference platforms can be found in GitLab7 with their use171

documented in README.md. It is expected that a HWpack provides configuration172

file(s) that:173

• Generate the required image(s) from either a reference or project specific174

OSpack175

• Generate images containing the partitioning expected by the target and176

project177

• Add any extra components needed via the installation of packages178

• Are provided with any scripts required to aid in the application of minor179

changes to tweak the image to required default configuration180

• Generate any project specific OSpacks when sufficient support can’t be181

added to the generic OSpack recipes to cover the functionality required182

by the relevant project.183

Documentation184

Documentation should be provided with the Debos configuration detailing the185

use of any configuration files provided and documenting the process to be fol-186

lowed to install the generated images into a new target device to yield a booting187

system.188

Testing189

Apertis provides infrastructure to both continuously build and test software190

on target devices based on Docker8, GitLab CI/CD9 and LAVA10. It is ex-191

pected that the provided source and configuration artifacts (and possibly bi-192

7https://gitlab.apertis.org/infrastructure/apertis-image-recipes
8https://www.docker.com/
9https://docs.gitlab.com/ee/ci/

10https://lavasoftware.org/

7

https://gitlab.apertis.org/infrastructure/apertis-image-recipes
https://www.docker.com/
https://docs.gitlab.com/ee/ci/
https://lavasoftware.org/
https://gitlab.apertis.org/infrastructure/apertis-image-recipes
https://www.docker.com/
https://docs.gitlab.com/ee/ci/
https://lavasoftware.org/

nary firmware as mentioned above), when integrated into the provided Apertis193

infrastructure, will be capable of generating images which pass hardware boot194

testing with no manual steps required.195

Licensing196

Code, including build scripts, helpers and recipes, developed for Apertis should197

comply with the Apertis Licensing11.198

11https://sjoerd.pages.apertis.org/apertis-website/policies/license-applying/

8

https://sjoerd.pages.apertis.org/apertis-website/policies/license-applying/
https://sjoerd.pages.apertis.org/apertis-website/policies/license-applying/

	Concepts
	Image Building Stages
	OSpack
	HWpack

	Apertis packages
	Typical Apertis OS layout

	HWpack Components
	Bootloader
	Linux Kernel
	Firmware
	Debos .yaml configuration
	Documentation

	Testing
	Licensing

