
Coding Conventions

Contents1

Summary . 22

Code formatting . 23

Reformatting code . 34

Memory management . 45

Namespacing . 46

Modularity . 57

Pre- and post-condition assertions . 68

GError usage . 79

GList . 810

Magic values . 1011

Asynchronous methods . 1012

Enumerated types and booleans . 1113

GObject properties . 1114

Resource leaks . 1215

This document specifically relates to software which is or has been created for16

the Apertis project. It is important that any code added to an existing project17

utilises the coding conventions as used by that project, maintaining consistency18

across that projects codebase.19

Coding conventions is a nebulous topic, covering code formatting and whites-20

pace, function and variable naming, namespacing, use of common GLib coding21

patterns, and other things. Since C is quite flexible, this document mostly22

consists of a series of patterns (which it’s recommended code follows) and anti-23

patterns (which it’s recommended code does not follow). Any approaches to24

coding which are not covered by a pattern or anti-pattern are completely valid.25

Guidelines which are specific to GLib are included on this page; guidelines26

specific to other APIs are covered on their respective pages.27

Summary28

• Use the GLib coding style, with vim modelines.29

• Consistently namespace files, functions and types.30

• Always design code to be modular, encapsulated and loosely coupled.31

– Especially by keeping object member variables inside the object’s32

private structure.33

• Code defensively by adding pre- and post-conditions assertions to all pub-34

lic functions.35

• Report all user errors (and no programmer errors) using GError.36

• Use appropriate container types for sets of items.37

• Document all constant values used in the code.38

• Use standard GLib patterns for defining asynchronous methods.39

• Do not call any blocking, synchronous functions.40

• Do not run blocking operations in separate threads; use asynchronous calls41

instead.42

2

• Prefer enumerated types over booleans whenever there is the potential for43

ambiguity between true and false.44

• Ensure GObject properties have no side-effects.45

• Treat resources as heap-allocated memory and do not leak them.46

Code formatting47

Using a consistent code formatting style eases maintenance of code, by meaning48

contributors only have to learn one coding style for all modules, rather than one49

per module.50

The coding style in use is the popular GLib coding style1, which is a slightly51

modified version of the GNU coding style2.52

Each C and H file should have a vim-style modeline, which lets the programmer’s53

editor know how code in the file should be formatted. This helps keep the coding54

style consistent as the files evolve. The following modeline should be put as the55

very first line of the file, immediately before the copyright comment3:56

1 /* vim:set et sw=2 cin cino=t0,f0,(0,{s,>2s,n-s,^-s,e2s: */

For more information about the copyright comment, see Applying Licensing4.57

Reformatting code58

If a file or module does not conform to the code formatting style and needs to59

be reindented, the following command will do most of the work — but it can60

go wrong, and the file must be checked manually afterwards:61

$ indent -gnu -hnl -nbbo -bbb -sob -bad -nut /path/to/file62

To apply this to all C and H files in a module:63

$ git ls-files '*.[ch]' | \64

$ xargs indent -gnu -hnl -nbbo -bbb -sob -bad -nut65

Alternatively, if you have a recent enough version of Clang (>3.5):66

$ git ls-files '*.[ch]' | \67

$ xargs clang-format -i -style=file68

Using a .clang-format file (added to git) in the same directory, containing:69

1https://developer.gnome.org/programming-guidelines/unstable/c-coding-style.html.en
2http://www.gnu.org/prep/standards/standards.html#Writing-C
3https://sjoerd.pages.apertis.org/apertis-website/policies/license-applying/#licensing-of-

code
4https://sjoerd.pages.apertis.org/apertis-website/policies/license-applying/

3

https://developer.gnome.org/programming-guidelines/unstable/c-coding-style.html.en
http://www.gnu.org/prep/standards/standards.html#Writing-C
https://sjoerd.pages.apertis.org/apertis-website/policies/license-applying/#licensing-of-code
https://sjoerd.pages.apertis.org/apertis-website/policies/license-applying/
https://developer.gnome.org/programming-guidelines/unstable/c-coding-style.html.en
http://www.gnu.org/prep/standards/standards.html#Writing-C
https://sjoerd.pages.apertis.org/apertis-website/policies/license-applying/#licensing-of-code
https://sjoerd.pages.apertis.org/apertis-website/policies/license-applying/#licensing-of-code
https://sjoerd.pages.apertis.org/apertis-website/policies/license-applying/

1

2

3

4

5

6

7

8

9

10

11

See https://www.apertis.org/policies/coding_conventions/#code-

formatting

BasedOnStyle: GNU

AlwaysBreakAfterDefinitionReturnType: All

BreakBeforeBinaryOperators: None

BinPackParameters: false

SpaceAfterCStyleCast: true

Our column limit is actually 80, but setting that results in clang-

format

making a lot of dubious hanging-

indent choices; disable it and assume the

developer will line wrap appropriately. clang-format will still check

existing hanging indents.

ColumnLimit: 0

Memory management70

See Memory management5 for some patterns on handling memory management;71

particularly single path cleanup6.72

Namespacing73

Consistent and complete namespacing of symbols (functions and types) and files74

is important for two key reasons:75

1. Establishing a convention which means developers have to learn fewer76

symbol names to use the library — they can guess them reliably instead.77

2. Ensuring symbols from two projects do not conflict if included in the same78

file.79

The second point is important — imagine what would happen if every project80

exported a function called create_object(). The headers defining them could81

not be included in the same file, and even if that were overcome, the program-82

mer would not know which project each function comes from. Namespacing83

eliminates these problems by using a unique, consistent prefix for every symbol84

and filename in a project, grouping symbols into their projects and separating85

them from others.86

The conventions below should be used for namespacing all symbols. They are87

the same as used in other GLib-based projects7, so should be familiar to a lot88

of developers:89

5https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/
6https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/#Single-

path_cleanup
7https://developer.gnome.org/gobject/stable/gtype-conventions.html

4

https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/
https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/#Single-path_cleanup
https://developer.gnome.org/gobject/stable/gtype-conventions.html
https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/
https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/#Single-path_cleanup
https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/#Single-path_cleanup
https://developer.gnome.org/gobject/stable/gtype-conventions.html

• Functions should use lower_case_with_underscores.90

• Structures, types and objects should use CamelCaseWithoutUnderscores.91

• Macros and #defines should use UPPER_CASE_WITH_UNDERSCORES.92

• All symbols should be prefixed with a short (2–4 characters) version of93

the namespace.94

• All methods of an object should also be prefixed with the object name.95

Additionally, public headers should be included from a subdirectory, effectively96

namespacing the header files. For example, instead of #include <abc.h>, a project97

should allow its users to use #include <namespace/ns-abc.h>98

For example, for a project called ‘Walbottle’, the short namespace ‘Wbl’ would99

be chosen. If it has a ‘schema’ object and a ‘writer’ object, it would install100

headers:101

• $PREFIX/include/walbottle-$API_MAJOR/walbottle/wbl-schema.h102

• $PREFIX/include/walbottle-$API_MAJOR/walbottle/wbl-writer.h103

(The use of $API_MAJOR above is for parallel installability8.)104

For the schema object, the following symbols would be exported (amongst oth-105

ers), following GObject conventions:106

• WblSchema structure107

• WblSchemaClass structure108

• WBL_TYPE_SCHEMA macro109

• WBL_IS_SCHEMA macro110

• wbl_schema_get_type function111

• wbl_schema_new function112

• wbl_schema_load_from_data function113

Modularity114

Modularity9, encapsulation10 and loose coupling11 are core computer science115

concepts which are necessary for development of maintainable systems. Tightly116

coupled systems require large amounts of effort to change, due to each change117

affecting a multitude of other, seemingly unrelated pieces of code. Even for118

smaller projects, good modularity is highly recommended, as these systems may119

grow to be larger, and refactoring for modularity takes a lot of effort.120

Assuming the general concepts of modularity, encapsulation and loose coupling121

are well known, here are some guidelines for implementing them which are122

specific to GLib and GObject APIs:123

8https://sjoerd.pages.apertis.org/apertis-website/guides/module_setup/#Parallel_
installability

9http://en.wikipedia.org/wiki/Modular_programming
10http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29
11http://en.wikipedia.org/wiki/Loose_coupling

5

https://sjoerd.pages.apertis.org/apertis-website/guides/module_setup/#Parallel_installability
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Loose_coupling
https://sjoerd.pages.apertis.org/apertis-website/guides/module_setup/#Parallel_installability
https://sjoerd.pages.apertis.org/apertis-website/guides/module_setup/#Parallel_installability
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Loose_coupling

1. The private structure for a GObject should not be in any header files124

(whether private or public). It should be in the C file defining the object,125

as should all code which implements that structure and mutates it.126

2. libtool convenience libraries should be used freely to allow internal127

code to be used by multiple public libraries or binaries. However,128

libtool convenience libraries must not be installed on the system. Use129

noinst_LTLIBRARIES in Makefile.am to declare a convenience library; not130

lib_LTLIBRARIES.131

3. Restrict the symbols exported by public libraries by using my_library_LDFLAGS132

= -export-symbols my-library.symbols, where my-library.symbols is a text133

file listing the names of the functions to export, one per line. This134

prevents internal or private functions from being exported, which would135

break encapsulation. See Exposing and Hiding Symbols12.136

4. Do not put any members (e.g. storage for object state or properties) in a137

public GObject structure — they should all be encapsulated in a private138

structure declared using G_DEFINE_TYPE_WITH_PRIVATE13.139

5. Do not use static variables inside files or functions to preserve function140

state between calls to it. Instead, store the state in an object (e.g. the141

object the function is a method of) as a private member variable (in the142

object’s private structure). Using static variables means the state is shared143

between all instances of the object, which is almost always undesirable,144

and leads to confusing behaviour.145

Pre- and post-condition assertions146

An important part of secure coding is ensuring that incorrect data does not147

propagate far through code — the further some malicious input can propagate,148

the more code it sees, and the greater potential there is for an exploit to be149

possible.150

A standard way of preventing the propagation of invalid data is to check all151

inputs to, and outputs from, all publicly visible functions in a library or module.152

There are two levels of checking:153

• Assertions: Check for programmer errors and abort the program on fail-154

ure.155

• Validation: Check for invalid input and return an error gracefully on fail-156

ure.157

Validation is a complex topic, and is handled using GErrors. The remainder of158

this section discusses pre- and post-condition assertions, which are purely for159

catching programmer errors. A programmer error is where a function is called160

in a way which is documented as disallowed. For example, if NULL is passed to161

a parameter which is documented as requiring a non-NULL value to be passed;162

12https://autotools.io/libtool/symbols.html
13https://developer.gnome.org/gobject/stable/gobject-Type-Information.html#G-

DEFINE-TYPE-WITH-PRIVATE:CAPS

6

https://autotools.io/libtool/symbols.html
https://developer.gnome.org/gobject/stable/gobject-Type-Information.html#G-DEFINE-TYPE-WITH-PRIVATE:CAPS
https://autotools.io/libtool/symbols.html
https://developer.gnome.org/gobject/stable/gobject-Type-Information.html#G-DEFINE-TYPE-WITH-PRIVATE:CAPS
https://developer.gnome.org/gobject/stable/gobject-Type-Information.html#G-DEFINE-TYPE-WITH-PRIVATE:CAPS

or if a negative value is passed to a function which requires a positive value.163

Programmer errors can happen on output too — for example, returning NULL164

when it is not documented to, or not setting a GError output when it fails.165

Adding pre- and post-condition assertions to code is as much about ensuring166

the behaviour of each function is correctly and completely documented as it is167

about adding the assertions themselves. All assertions should be documented,168

preferably by using the relevant gobject-introspection annotations14, such as169

(nullable).170

Pre- and post-condition assertions are implemented using g_return_if_fail()15171

and g_return_val_if_fail()16.172

The pre-conditions should check each parameter at the start of the function,173

before any other code is executed (even retrieving the private data structure174

from a GObject, for example, since the GObject pointer could be NULL). The175

post-conditions should check the return value and any output parameters at the176

end of the function — this requires a single return statement and use of goto to177

merge other control paths into it. See Single-path cleanup17 for an example.178

A fuller example is given in this writeup of post-conditions18.179

GError usage180

GError19 is the standard error reporting mechanism for GLib-using code, and181

can be thought of as a C implementation of an exception20.182

Any kind of runtime failure (anything which is not a programmer error) must183

be handled by including a GError** parameter in the function, and setting a184

useful and relevant GError describing the failure, before returning from the185

function. Programmer errors must not be handled using GError: use assertions,186

pre-conditions or post-conditions instead.187

GError should be used in preference to a simple return code, as it can con-188

vey more information, and is also supported by all GLib tools. For example,189

introspecting an API with GObject introspection21 will automatically detect190

all GError parameters so that they can be converted to exceptions in other191

languages.192

14https://wiki.gnome.org/Projects/GObjectIntrospection/Annotations
15https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-

if-fail
16https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-

val-if-fail
17https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/#Single-

path_cleanup
18https://tecnocode.co.uk/2010/12/19/postconditions-in-c/
19https://developer.gnome.org/glib/stable/glib-Error-Reporting.html
20http://en.wikipedia.org/wiki/Exception_handling
21https://wiki.gnome.org/Projects/GObjectIntrospection

7

https://wiki.gnome.org/Projects/GObjectIntrospection/Annotations
https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-if-fail
https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-val-if-fail
https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/#Single-path_cleanup
https://tecnocode.co.uk/2010/12/19/postconditions-in-c/
https://developer.gnome.org/glib/stable/glib-Error-Reporting.html
http://en.wikipedia.org/wiki/Exception_handling
https://wiki.gnome.org/Projects/GObjectIntrospection
https://wiki.gnome.org/Projects/GObjectIntrospection/Annotations
https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-if-fail
https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-if-fail
https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-val-if-fail
https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-val-if-fail
https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/#Single-path_cleanup
https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/#Single-path_cleanup
https://tecnocode.co.uk/2010/12/19/postconditions-in-c/
https://developer.gnome.org/glib/stable/glib-Error-Reporting.html
http://en.wikipedia.org/wiki/Exception_handling
https://wiki.gnome.org/Projects/GObjectIntrospection

Printing warnings to the console must not be done in library code: use a GError,193

and the calling code can propagate it further upwards, decide to handle it, or194

decide to print it to the console. Ideally, the only code which prints to the195

console will be top-level application code, and not library code.196

Any function call which can take a GError**, should take such a parameter, and197

the returned GError should be handled appropriately. There are very few situ-198

ations where ignoring a potential error by passing NULL to a GError** parameter199

is acceptable.200

The GLib API documentation contains a full tutorial for using GError22.201

GList202

GLib provides several container types for sets of data:203

• GList23204

• GSList24205

• GPtrArray25206

• GArray26207

It has been common practice in the past to use GList in all situations where208

a sequence or set of data needs to be stored. This is inadvisable — in most209

situations, a GPtrArray should be used instead. It has lower memory overhead210

(a third to a half of an equivalent list), better cache locality, and the same211

or lower algorithmic complexity for all common operations. The only typical212

situation where a GList may be more appropriate is when dealing with ordered213

data, which requires expensive insertions at arbitrary indexes in the array.214

Article on linked list performance27215

If linked lists are used, be careful to keep the complexity of operations on216

them low, using standard CS complexity analysis. Any operation which uses217

g_list_nth()28 or g_list_nth_data()29 is almost certainly wrong. For example,218

iteration over a GList should be implemented using the linking pointers, rather219

than a incrementing index:220

22https://developer.gnome.org/glib/stable/glib-Error-Reporting.html#glib-Error-
Reporting.description

23https://developer.gnome.org/glib/stable/glib-Doubly-Linked-Lists.html
24https://developer.gnome.org/glib/stable/glib-Singly-Linked-Lists.html
25https://developer.gnome.org/glib/stable/glib-Pointer-Arrays.html
26https://developer.gnome.org/glib/stable/glib-Arrays.html
27http://www.codeproject.com/Articles/340797/Number-crunching-Why-you-should-

never-ever-EVER-us
28https://developer.gnome.org/glib/2.30/glib-Doubly-Linked-Lists.html#g-list-nth
29https://developer.gnome.org/glib/2.30/glib-Doubly-Linked-Lists.html#g-list-nth-data

8

https://developer.gnome.org/glib/stable/glib-Error-Reporting.html#glib-Error-Reporting.description
https://developer.gnome.org/glib/stable/glib-Doubly-Linked-Lists.html
https://developer.gnome.org/glib/stable/glib-Singly-Linked-Lists.html
https://developer.gnome.org/glib/stable/glib-Pointer-Arrays.html
https://developer.gnome.org/glib/stable/glib-Arrays.html
http://www.codeproject.com/Articles/340797/Number-crunching-Why-you-should-never-ever-EVER-us
https://developer.gnome.org/glib/2.30/glib-Doubly-Linked-Lists.html#g-list-nth
https://developer.gnome.org/glib/2.30/glib-Doubly-Linked-Lists.html#g-list-nth-data
https://developer.gnome.org/glib/stable/glib-Error-Reporting.html#glib-Error-Reporting.description
https://developer.gnome.org/glib/stable/glib-Error-Reporting.html#glib-Error-Reporting.description
https://developer.gnome.org/glib/stable/glib-Doubly-Linked-Lists.html
https://developer.gnome.org/glib/stable/glib-Singly-Linked-Lists.html
https://developer.gnome.org/glib/stable/glib-Pointer-Arrays.html
https://developer.gnome.org/glib/stable/glib-Arrays.html
http://www.codeproject.com/Articles/340797/Number-crunching-Why-you-should-never-ever-EVER-us
http://www.codeproject.com/Articles/340797/Number-crunching-Why-you-should-never-ever-EVER-us
https://developer.gnome.org/glib/2.30/glib-Doubly-Linked-Lists.html#g-list-nth
https://developer.gnome.org/glib/2.30/glib-Doubly-Linked-Lists.html#g-list-nth-data

1

2

3

4

5

6

7

8

GList *some_list, *l;

for (l = some_list; l != NULL; l = l->next)

{

gpointer element_data = l->data;

/* Do something with @element_data. */

}

Using an incrementing index instead results in an exponential decrease in per-221

formance (O(2×N^2) rather than O(N)):222

1

2

3

4

5

6

7

8

9

10

GList *some_list;

guint i;

/* This code is inefficient and should not be used in production. */

for (i = 0; i < g_list_length (some_list); i++)

{

gpointer element_data = g_list_nth_data (some_list, i);

/* Do something with @element_data. */

}

The performance penalty comes from g_list_length() and g_list_nth_data()223

which both traverse the list (O(N)) to perform their operations.224

Implementing the above with a GPtrArray has the same complexity as the first225

(correct) GList implementation, but better cache locality and lower memory226

consumption, so will perform better for large numbers of elements:227

1

2

3

4

5

6

7

8

9

GPtrArray *some_array;

guint i;

for (i = 0; i < some_array->len; i++)

{

gpointer element_data = some_array->pdata[i];

/* Do something with @element_data. */

}

9

Magic values228

Do not use constant values in code without documenting them. These values229

can be known as ‘magic’ values, because it is not clear how they were chosen,230

what they depend on, or when they need to be updated.231

Magic values should be:232

• defined as macros using #define, rather than being copied to every usage233

site;234

• all defined in an easy-to-find-location, such as the top of the source code235

file; and236

• documented, including information about how they were chosen, and what237

that choice depended on.238

One situation where magic values are used incorrectly is to circumvent the type239

system. For example, a magic string value which indicates a special state for240

a string variable. Magic values should not be used for this, as the software241

state could then be corrupted if user input includes that string (for example).242

Instead, a separate variable should be used to track the special state. Use the243

type system to do this work for you — magic values should never be used as a244

basic dynamic typing system.245

Asynchronous methods246

Long-running blocking operations should not be run such that they block the247

UI in a graphical application. This happens when one iteration of the UI’s248

main loop takes significantly longer than the frame refresh rate, so the UI is not249

refreshed when the user expects it to be. Interactivity reduces and animations250

stutter. In extreme cases, the UI can freeze entirely until a blocking operation251

completes. This should be avoided at all costs.252

Similarly, in non-graphical applications that respond to network requests or D-253

Bus inter-process communication30, blocking the main loop prevents the next254

request from being handled.255

There are two possible approaches for preventing the main loop being blocked:256

1. Running blocking operations asynchronously in the main thread, using257

polled I/O.258

2. Running blocking operations in separate threads, with the main loop in259

the main thread.260

The second approach (see Threading31 typically leads to complex locking and261

synchronisation between threads, and introduces many bugs. The recommended262

approach in GLib applications is to use asynchronous operations, implemented263

30https://sjoerd.pages.apertis.org/apertis-website/guides/d-bus_services/
31https://sjoerd.pages.apertis.org/apertis-website/guides/threading/

10

https://sjoerd.pages.apertis.org/apertis-website/guides/d-bus_services/
https://sjoerd.pages.apertis.org/apertis-website/guides/d-bus_services/
https://sjoerd.pages.apertis.org/apertis-website/guides/d-bus_services/
https://sjoerd.pages.apertis.org/apertis-website/guides/threading/
https://sjoerd.pages.apertis.org/apertis-website/guides/d-bus_services/
https://sjoerd.pages.apertis.org/apertis-website/guides/threading/

using GTask32 and GAsyncResult33. Asynchronous operations must be imple-264

mented everywhere for this approach to work: any use of a blocking, syn-265

chronous operation will effectively make all calling functions blocking and syn-266

chronous too.267

The documentation for GTask34 and GAsyncResult35 includes examples and tuto-268

rials for implementing and using GLib-style asynchronous functions.269

Key principles for using them:270

1. Never call synchronous methods: always use the *_async() and *_finish()271

variant methods.272

2. Never use threads for blocking operations if an asynchronous alternative273

exists.274

3. Always wait for an asynchronous operation to complete (i.e. for its GAsyn-275

cReadyCallback to be invoked) before starting operations which depend on276

it.277

• Never use a timeout (g_timeout_add()) to wait until an asynchronous278

operation ‘should’ complete. The time taken by an operation is unpre-279

dictable, and can be affected by other applications, kernel scheduling280

decisions, and various other system processes which cannot be pre-281

dicted.282

Enumerated types and booleans283

In many cases, enumerated types should be used instead of booleans:284

1. Booleans are not self-documenting in the same way as enums are. When285

reading code it can be easy to misunderstand the sense of the boolean and286

get things the wrong way round.287

2. They are not extensible. If a new state is added to a property in future,288

the boolean would have to be replaced — if an enum is used, a new value289

simply has to be added to it.290

This is documented well in the article Use Enums Not Booleans36.291

GObject properties292

Properties on GObjects37 are a key feature of GLib-based object orientation.293

Properties should be used to expose state variables of the object. A guiding294

principle for the design of properties is that (in pseudo-code):295

32https://developer.gnome.org/gio/stable/GTask.html
33https://developer.gnome.org/gio/stable/GAsyncResult.html
34https://developer.gnome.org/gio/stable/GTask.html
35https://developer.gnome.org/gio/stable/GAsyncResult.html
36http://c2.com/cgi/wiki?UseEnumsNotBooleans
37https://developer.gnome.org/gobject/stable/gobject-properties.html

11

https://developer.gnome.org/gio/stable/GTask.html
https://developer.gnome.org/gio/stable/GAsyncResult.html
https://developer.gnome.org/gio/stable/GTask.html
https://developer.gnome.org/gio/stable/GAsyncResult.html
http://c2.com/cgi/wiki?UseEnumsNotBooleans
https://developer.gnome.org/gobject/stable/gobject-properties.html
https://developer.gnome.org/gio/stable/GTask.html
https://developer.gnome.org/gio/stable/GAsyncResult.html
https://developer.gnome.org/gio/stable/GTask.html
https://developer.gnome.org/gio/stable/GAsyncResult.html
http://c2.com/cgi/wiki?UseEnumsNotBooleans
https://developer.gnome.org/gobject/stable/gobject-properties.html

1

2

3

var temp = my_object.some_property

my_object.some_property = "new value"

my_object.some_property = temp

should leave my_object in exactly the same state as it was originally. Specifically,296

properties should not act as parameterless methods, triggering state transitions297

or other side-effects.298

Resource leaks299

As well as memory leaks38, it is possible to leak resources such as GLib timeouts,300

open file descriptors or connected GObject signal handlers. Any such resources301

should be treated using the same principles as allocated memory.302

For example, the source ID returned by g_timeout_add()39 must always be stored303

and removed (using g_source_remove()40) when the owning object is finalised.304

This is because it is very rare that we can guarantee the object will live longer305

than the timeout period — and if the object is finalised, the timeout left uncan-306

celled, and then the timeout triggers, the program will typically crash due to307

accessing the object’s memory after it’s been freed.308

Similarly for signal connections, the signal handler ID returned by309

g_signal_connect()41 should always be saved and explicitly disconnected310

(g_signal_handler_disconnect()42) unless the object being connected is guaran-311

teed to live longer than the object being connected to (the one which emits the312

signal):313

Other resources which can be leaked, plus the functions acquiring and releasing314

them (this list is non-exhaustive):315

• File descriptors (FDs):316

– g_open()43317

– g_close()44318

• Threads:319

– g_thread_new()45320

38https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/
39https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-timeout-

add
40https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-source-

remove
41https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-connect
42https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-handler-

disconnect
43https://developer.gnome.org/glib/stable/glib-File-Utilities.html#g-open
44https://developer.gnome.org/glib/stable/glib-File-Utilities.html#g-close
45https://developer.gnome.org/glib/stable/glib-Threads.html#g-thread-new

12

https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-timeout-add
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-source-remove
https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-connect
https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-handler-disconnect
https://developer.gnome.org/glib/stable/glib-File-Utilities.html#g-open
https://developer.gnome.org/glib/stable/glib-File-Utilities.html#g-close
https://developer.gnome.org/glib/stable/glib-Threads.html#g-thread-new
https://sjoerd.pages.apertis.org/apertis-website/guides/memory_management/
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-timeout-add
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-timeout-add
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-source-remove
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-source-remove
https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-connect
https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-handler-disconnect
https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-handler-disconnect
https://developer.gnome.org/glib/stable/glib-File-Utilities.html#g-open
https://developer.gnome.org/glib/stable/glib-File-Utilities.html#g-close
https://developer.gnome.org/glib/stable/glib-Threads.html#g-thread-new

– g_thread_join()46321

• Subprocesses:322

– g_spawn_async()47323

– g_spawn_close_pid()48324

• D-Bus name watches:325

– g_bus_watch_name()49326

– g_bus_unwatch_name()50327

• D-Bus name ownership:328

– g_bus_own_name()51329

– g_bus_unown_name()52330

46https://developer.gnome.org/glib/stable/glib-Threads.html#g-thread-join
47https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-async
48https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-close-

pid
49https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-watch-

name
50https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-

unwatch-name
51https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-own-name
52https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-unown-

name

13

https://developer.gnome.org/glib/stable/glib-Threads.html#g-thread-join
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-async
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-close-pid
https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-watch-name
https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-unwatch-name
https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-own-name
https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-unown-name
https://developer.gnome.org/glib/stable/glib-Threads.html#g-thread-join
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-async
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-close-pid
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-close-pid
https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-watch-name
https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-watch-name
https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-unwatch-name
https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-unwatch-name
https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-own-name
https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-unown-name
https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-unown-name

	Summary
	Code formatting
	Reformatting code

	Memory management
	Namespacing
	Modularity
	Pre- and post-condition assertions
	GError usage
	GList
	Magic values
	Asynchronous methods
	Enumerated types and booleans
	GObject properties
	Resource leaks

