A

V

APERTIS

LAVA External Device Monitoring

20

21

22

23

24

25

26

27

28

30

Contents

Test Cases 2
LAVA Features 2
LXC . e 2
MultiNode 2
Secondary Connections oo 3
Approach Overview 3
LAVA Job Connection Layout 3
Test Job e 3
Job File Example 4

QA Report 6

This document describes how to execute automated LAVA tests controlling re-
sources external to the DUT across a network implementing a LAVA parallel
pipeline job.

Test Cases

The approach proposed in this document will help to address test cases like:

o Executing a test in the DUT where certain power states are simulated (for
example a power loss) during specific test actions using a programmable
PSU external to the DUT.

o Executing a test in the DUT simulating SD card insertion and removal
using an external device.

The only assumption, in both scenario, proposed in this document is that the
external device (either a programmable PSU or SD-card simulator) can be ac-
cessed through the network using SSH.

LAVA Features

LAVA offers the following features that can be combined to implement a solution
for the test cases mentioned in this document:

e LXC to deploy required software and tools to access the external device.
e MultiNode to communicate data between jobs actions.
¢ Secondary connections for executing tests through SSH.

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

LXC

LAVA supports LXC containers both as a standalone device type and as dynamic
transparent environments in order to interact with external devices. In either
case the LXC Protocol! is used.

MultiNode

The MultiNode Protocol? allows data to be shared between actions, including
data generated in one test shell definition being made available over the protocol
to a deploy or boot action of jobs with a different role.

Synchronisation is done using the MultiNode API, specifically the 1ava-send and
lava-wait calls.

Secondary Connections

LAVA allows Secondary Connections® to open network connections to external
devices using MultiNode submissions.

Approach Overview

The main idea is to create a LXC container device associated to the DUT
responsible to execute the automated test, then opens a SSH connection to an
external device, and use the MultiNode API in order to synchronize both devices
and pass data between them with the LXC container serving like a coordinator
of the different LAVA tests actions.

In this way, a server-client layout is setup that will help to execute tests in
a board attached to LAVA (server side) with intervention of external devices
(client side).

LAVA Job Connection Layout

The LXC container is deployed directly from the LAVA dispatcher and coordi-
nate the execution of the parallel pipeline between the DUT and the external
device (secondary connection) from there.

The layout model would be something like:

/ MultiNode
LAVA (LXC)

Lhttps://lava.collabora.co.uk/static/docs/v2/actions-protocols.html#lxc-protocol-
reference

2https:/ /lava.collabora.co.uk /static/docs/v2/actions-protocols.html#multinode- protocol

3https://lava.collabora.co.uk/static/docs/v2/pipeline-writer-secondary.html

https://lava.collabora.co.uk/static/docs/v2/actions-protocols.html#lxc-protocol-reference
https://lava.collabora.co.uk/static/docs/v2/actions-protocols.html#multinode-protocol
https://lava.collabora.co.uk/static/docs/v2/pipeline-writer-secondary.html
https://lava.collabora.co.uk/static/docs/v2/actions-protocols.html#lxc-protocol-reference
https://lava.collabora.co.uk/static/docs/v2/actions-protocols.html#lxc-protocol-reference
https://lava.collabora.co.uk/static/docs/v2/actions-protocols.html#multinode-protocol
https://lava.collabora.co.uk/static/docs/v2/pipeline-writer-secondary.html

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

7777777777777 Secondary Connection (PSU, SD-Card HW)

MultiNode

Test Job

This section shows the basics proposed in this document using a LAVA job file
example.

The following steps describe the main flow of the job:

1 - Create two types of roles host and guest. The host role will contain the LXC
container and the DUT, the guest role will label the SSH connection for the
external device. This creates two groups (host and guest) that can communicate
using the MultiNode API, so messages can be sent between the LXC and Device
as the server and the secondary connection as the client.

2 - Label both types of roles in the protocols section of the job.
3 - Deploy and boot the rxc container (host).

4 - Execute a test in the LXC container using the MultiNode API to send the
lava_start message, so the deploy action for the external device can start, and
waits for remaining clients to start using the 1ava-sync call.

5 - Deploy the DUT (host).

6 - Deploy the external device (guest) , which is waiting for the LXC 1ava_start
message to start deployment. Once this message is recevied, the guest device is
deployed.

7 - Boot DUT.

8 - Boot external device.

9 - Execute a test in the DUT sending the 1ava-sync call.

10 - Execute a test in the external device sending the 1ava-sync call.

11 - Once all clients are synchronized (the LXC, DUT and external device),
start executing tests.

12 - Tests executed in the DUT and external device needs to use the MultiN-
odeAPI* in order to pass data between them.

As the LXC is deployed and booted first, the LXC can run a test shell before
deploying the device, before booting the device, before the test shell action on
the device which starts the secondary connection guests or at any later point
(AddingTestsActions®).

4https://lava.collabora.co.uk/static/docs/v2/multinodeapi.html#multinode-api
Shttps://lava.collabora.co.uk/static/docs/v2/writing-multinode. html#adding-test-
actions

https://lava.collabora.co.uk/static/docs/v2/multinodeapi.html#multinode-api
https://lava.collabora.co.uk/static/docs/v2/multinodeapi.html#multinode-api
https://lava.collabora.co.uk/static/docs/v2/multinodeapi.html#multinode-api
https://lava.collabora.co.uk/static/docs/v2/writing-multinode.html#adding-test-actions
https://lava.collabora.co.uk/static/docs/v2/multinodeapi.html#multinode-api
https://lava.collabora.co.uk/static/docs/v2/writing-multinode.html#adding-test-actions
https://lava.collabora.co.uk/static/docs/v2/writing-multinode.html#adding-test-actions

u Job File Example

o J o s Ww N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

job_name: LXC and Secondary connection with a Device

timeouts:
job:
minutes: 30
action:
minutes: 3
connection:
minutes: 5
priority: medium

visibility: public

protocols:
lava-lxc:
host:
name: lxc-ssh-test
template: debian
distribution: debian
release: stretch

lava-multinode:

expect_role is used by the dispatcher and is part of delay_start

host_role is used by the scheduler,

roles:

host:

device_type: beaglebone-black

This makes this role essential in order to execute the test.

essential: True
count: 1
timeout:
minutes: 10

guest:

protocol API call to make during protocol setup

request: lava-start

set the role for which this role will wait

expect_role: host
timeout:

minutes: 15

no device_type, just a connection

connection: ssh

count: 3

each ssh connection will attempt to connect to the device of role 'host'

host_role: host

actions:
— deploy:
role:
— host
namespace: probe
timeout:
minutes: 5

to: 1lxc

authorize for ssh adds the ssh public key to authorized_keys

authorize: ssh
packages:

— usbutils

unrelated to delay_start.

95

96

97

98

QA Report

Once tests results are available at LAVA | and the test cases are enabled for the
specific images from the test case repository, the results will be available from
the QA Report App automatically.

	Test Cases
	LAVA Features
	LXC
	MultiNode
	Secondary Connections

	Approach Overview
	LAVA Job Connection Layout
	Test Job
	Job File Example

	QA Report

