
Web portal caching

Contents1

Web portal caching 22

Introduction . 23

How HTTP caching works . 24

Caching in WebKit . 35

Client/Server implementation strategies 46

Application cache . 47

Custom HTTP application caching server running locally 58

Separatedly-maintained locally accessible copy of the portal con-9

tents . 510

Web portal caching11

Introduction12

The purpose of this document is to evaluate the available strategies to implement13

a custom, single-purpose browser restricted to a single portal website that hosts14

several HTML/JS applications.15

The portal and the visited applications should be available even if no Internet16

connection is available.17

If a connection to the Internet is available, the locally-stored contents should be18

refreshed.19

Locally-stored copies should be used to speed up loading even when the connec-20

tion to the Internet is available.21

The portal and the applications store all their runtime data using the local-22

Storage1 or IndexedDB2 mechanisms and how that is synchronized is out of the23

scope of this document, which instead focuses on how to manage static assets.24

How HTTP caching works25

Caching is a very important and complex feature in modern web engines to26

improve page load time and reduce bandwidth consumption. RFC72343 defines27

the mechanisms that control caching in the HTTP protocol regardless of its28

transport or serialization, which means that the same mechanisms apply to29

HTTPS and HTTP2 in the same way.30

HTTP has provisions for several use cases:31

• preventing highly dynamic resources from being cached32

• letting clients know for how long is acceptable to use cached data33

1https://html.spec.whatwg.org/multipage/webstorage.html
2https://www.w3.org/TR/IndexedDB/
3https://tools.ietf.org/html/rfc7234

2

https://html.spec.whatwg.org/multipage/webstorage.html
https://html.spec.whatwg.org/multipage/webstorage.html
https://html.spec.whatwg.org/multipage/webstorage.html
https://www.w3.org/TR/IndexedDB/
https://tools.ietf.org/html/rfc7234
https://html.spec.whatwg.org/multipage/webstorage.html
https://www.w3.org/TR/IndexedDB/
https://tools.ietf.org/html/rfc7234

• optimizing validation of cached entries to skip the download of the bodyi34

if the copy on the client still matches the one on the server35

• informing clients about resources that can be safely used even if stale when36

no connection is available and which ones must return an error37

Caching is generally available only for the GET method and is controlled by the38

server for every single HTTP resource by adding the Cache-control header to its39

responses: this instruct the client (the web engine) on the ways it can store the40

retrieved contents and re-use them to skip the download on subsequent requests.41

One of the most important uses of the Cache-control header is to disable any kind42

of caching on highly dynamic generated resources, by specifying the no-store43

value.44

The public and private directives instruct clients that the resource can be stored45

in the local cache (public also allows for caching in intermediate proxy servers,46

a feature which is progressively getting obsolete as it conflicts with the confiden-47

tiality requirements of HTTPS/TLS).48

The Expire header and the max-age directive let the server instruct the client for49

how long it can consider the cached resource valid. The client can completely50

skip any network access as long as the cached resource is “fresh”, otherwise it51

has to validate it against the server, but this does not mean that a complete52

re-download is always needed: using conditional requests, that is using the If-53

Modified-Since or If-None-Match headers to pass the values of the Last-Modified54

or ETag headers from the previous request, the dowload of the body is skipped55

if the values match and only headers will be transferred with a 304 Not Modified56

response.57

The HTML5 specification recently introduced the concept of application cache458

which caters for an additional, higher-level use case: pro-actively downloading59

all the resources needed by an HTML application for offline usage.60

This works by adding a manifest attribute to the <html> element of the main61

application page, and from there indicate the URL of a specially formatted62

resource that lists all the URLs the client needs to pro-actively retrieve in order63

to be able to run the application correctly when offline. The caching model64

used by this specification is somewhat less refined than the one used by the65

HTTP specification and for this reason it needs some special attention on how66

to ensure that the application is properly refreshed when changes are made on67

the server.68

The more complex and powerful Service Workers5 specification is meant to re-69

place this, but it is not supported yet by all modern browsers (works in Firefox70

and Chrome, WebKit and Edge don’t support it yet). The specification has71

been stable for more than a year, despite not being finalized yet. The WebKit72

4https://html.spec.whatwg.org/multipage/browsers.html#offline
5https://www.w3.org/TR/service-workers/

3

https://html.spec.whatwg.org/multipage/browsers.html#offline
https://www.w3.org/TR/service-workers/
https://html.spec.whatwg.org/multipage/browsers.html#offline
https://www.w3.org/TR/service-workers/

team has not yet shown a clear interest in implementing it, which may be the73

reason why the specification is still in the current status.74

Caching in WebKit75

WebKit currently has several caches:76

• a non-persistent, in-memory cache of rendered pages which is set to 277

pages if the total RAM is bigger or equal to 512MB78

• a non-persistent, in-memory decoded/parsed object cache6, set to 128MB79

if the total RAM is bigger or equal to 2GB and progressively lowered as80

the amount of total RAM decreases81

• a persistent, on-disk resources cache7 of 500MB if there are more than82

16GB free on the disk, progressively scaling down to 50MB if less than83

1GB is available.84

Those sizes are computed automatically but they can be customized to fit any85

requirements.86

When a new resource needs to be cached WebKit makes sure that the upper87

bound is respected and frees older cache entries in a LRU pattern to make88

enough room to accomodate the resource which is about to be downloaded.89

Downloaded contents to be stored in the on-disk URL cache are directly saved90

in the filesystem, using the normal buffering that the kernel does for every91

application to improve performance and minimize eMMC wear. This is further92

minimized by the fact that only contents marked for caching by the server using93

the appropriate HTTP headers will be cached: highly dynamic contents like94

news tickers won’t be marked as cacheable so they won’t impact the eMMC at95

all.96

The application cache is handled separatedly and it is unlimited by default, but97

this is a setting that can be changed. All the resources are stored in a SQLite98

database as data blobs, except for audio and video resources where the only the99

metadata is stored in the database and the contents are stored separatedly.100

To use the application cache effectively in WebKitGTK+ some implementation101

work would be required to limit the maximum size as the WebKit core hooks102

are currently not used by the WebKitGTK+ port, and the WebKit core itself103

does not currently provide any expiration policy for the cached contents.104

Client/Server implementation strategies105

Multiple strategies can be used to implement the previously defined system and106

affect the design of the client and of the contents offered by the portal server.107

6https://trac.webkit.org/browser/trunk/Source/WebKit2/Shared/CacheModel.cpp#L83
7https://trac.webkit.org/browser/trunk/Source/WebKit2/Shared/CacheModel.cpp#

L158

4

https://trac.webkit.org/browser/trunk/Source/WebKit2/Shared/CacheModel.cpp#L83
https://trac.webkit.org/browser/trunk/Source/WebKit2/Shared/CacheModel.cpp#L158
https://trac.webkit.org/browser/trunk/Source/WebKit2/Shared/CacheModel.cpp#L83
https://trac.webkit.org/browser/trunk/Source/WebKit2/Shared/CacheModel.cpp#L158
https://trac.webkit.org/browser/trunk/Source/WebKit2/Shared/CacheModel.cpp#L158

Application cache108

The main HTML page of the portal links to an appcache manifest that instruct109

the browser to pro-actively fetch all the needed resources.110

All subsequent accesses to the portal will be served from the cached copy, re-111

gardless of the availability of an Internet connection.112

If the portal is accessed when an Internet connection is available, the browser will113

retrieve the appcache manifest from the server in the background and check for114

modifications: if a new version is detected the portal resources will be refreshed115

in the background and will be used for subsequent accesses to the portal.116

Each application will have its own appcache manifest, so it will be locally cached117

after the first visit.118

To ensure that the portal is available on first-boot even if no Internet connection119

is available, during the process of generating the system image the browser will120

be launched using a special mode that will cause it to connect to the portal, pop-121

ulate the application cache and exit as soon as the ApplicationCache::updateready122

event is fired. An ad-hoc program using WebKit may be used instead of adding123

a special mode to the browser.124

This is the simplest and most portable approach on the client side, as all the125

caching logic is provided by the portal server using standard W3C mechanisms.126

Custom HTTP application caching server running locally127

Alternatively, the browser can be instructed to connect to a custom HTTP proxy128

server running locally instead of directly to the portal server.129

Since TLS authentication cannot work appropriately through proxy servers, it is130

taken care by the proxy server itself, with the browser talking to the local proxy131

over unencrypted HTTP and the proxy converting HTTP requests to HTTPS.132

This means that unencrypted communications will only happen locally between133

trusted components, while all the network traffic will be encrypted. Just like for134

any other HTTP error, the proxy can return error pages to the browser in case135

of TLS error (for instance, if the server certificate is expired) or return cached136

contents if available.137

The custom proxy is then responsible for connecting to the portal server and138

retrieving updated contents from there, locally caching it with any kind of expiry139

and refresh policy desired, and processing cached resources when needed, for140

instance by rewriting links from HTTPS to HTTP.141

The browser needs to be configured to reduce its own caching to a minimum,142

since the smart proxy already does it.143

During the manifactuing process the proxy cache will be preloaded with the144

resources hosted by the portal server.145

5

This is the most flexible approach.146

Separatedly-maintained locally accessible copy of the portal contents147

Instead of having a locally running custom HTTP caching proxy, the portal148

contents are stored as plain files on the system. The browser will contain custom149

logic to load the local HTML file instead of the portal URL when no Internet150

connection is available.151

A separate process will periodically compare the locally-stored HTML file and152

resources against the portal server and refresh the local copy.153

This is the least flexible choice, and the locally stored copies cannot be used as154

cache to speed up rendering when the connection to the Internet is available.155

6

	Web portal caching
	Introduction
	How HTTP caching works
	Caching in WebKit
	Client/Server implementation strategies
	Application cache
	Custom HTTP application caching server running locally
	Separatedly-maintained locally accessible copy of the portal contents

