
SDK

Contents1

Software Development Kit 22

Definitions . 23

Software Development Kit (SDK) Purpose 24

API/ABI Stability Guarantees . 25

Reference System Image Composition 36

System Image Software Licenses . 37

Development Workflow . 38

Typical Workflow . 39

On-device Workflow . 410

Workflow-simplifying Plugins . 411

3D acceleration within VirtualBox . 512

Simulating Multi-touch in VirtualBox 613

Software-based solution . 614

Hardware-based solution . 915

Third-party Application Validation Tools 1016

Two-step Application Validation Process 1017

App Validation Tool . 1018

General approach to third-party applications 1119

Software Development Kit20

Definitions21

• Application Binary Interface (ABI) Stability: the library guaran-22

tees API stability and further guarantees dependent applications and li-23

braries will not require any changes to successfully link against any future24

release. The library may add new public symbols freely.25

• Application Programming Interface (API) Stability: the library26

guarantees to not remove or change any public symbols in a way that would27

require dependent applications or libraries to change their source code to28

successfully compile and link against later releases of the library. The29

library may add new public symbols freely. Later releases of the API-stable30

library may include ABI breaks which require dependent applications or31

libraries to be recompiled to successfully link against the library. Compare32

to ABI Stability.33

• Backwards compatibility: the guarantee that a library will not change34

in a way that will require existing dependent applications or libraries to35

change their source code to run against future releases of the library. This36

is a more general term than ABI or API stability, so it does not necessarily37

imply ABI stability.38

• Disruptive release: a release in which backwards compatibility is bro-39

ken. Note that this term is unique to this project. In some development40

2

contexts, the term “major release” is used instead. However, that term is41

ambiguous in general.42

Software Development Kit (SDK) Purpose43

The primary purpose of the special SDK system image will be to enable Apertis44

application and third-party library development. It will include development45

tools and documentation to make this process as simple as possible for devel-46

opers. And a significant part of this will be the ability to run the SDK within47

the VirtualBox PC emulator. VirtualBox runs on ordinary x86 hardware which48

tends to make development much simpler than a process which requires building49

and running in-development software directly on the target hardware which will50

be of significantly lower performance relative to developer computers.51

API/ABI Stability Guarantees52

Collabora will carry along open source software components’ API and ABI sta-53

bility guarantees into the Apertis Reference SDK API. In most cases, this will54

be a guarantee of complete API and ABI stability for all future releases with55

the same major version. Because these portions of Apertis will not be upgraded56

to later disruptive releases, these portions will maintain API and ABI stability57

at least for each major release of Apertis.58

The platform software included in the Reference system images will be in the59

form of regular Debian packages and never in the form of application-level pack-60

ages, which are described in the “Apertis Supported API” document. Collabora61

will manage API/ABI stability of the platform libraries and prevent conflicts62

between libraries at this level.63

See the “Apertis Supported API” document for more details of specific com-64

ponents’ stability guarantees and the software management of platform, core65

application, and third-party application software.66

Reference System Image Composition67

See the document “Apertis Build and Integration”, section “Reference System68

Image Composition”.69

System Image Software Licenses70

See the document “Apertis Build and Integration” for details on license checking71

and compliance of software contained in the system images.72

3

Development Workflow73

Typical Workflow74

Most developers working on specific libraries or applications will not be strictly75

dependent upon the exact performance characteristics of the device hardware.76

And even those who are performance-dependent may wish to work within the77

SDK when they aren’t strictly tuning performance, as it will yield a much shorter78

development cycle.79

For these most-common use cases, a typical workflow will look like:80

1. modify source code in Eclipse81

2. build (for x86)82

3. smoke-test within the Target Simulator83

4. return to step 1. if necessary84

In order to test this code on the actual device, the code will need to be cross-85

compiled (see the document “Apertis Build and Integration Design”, section86

“App cross-compilation”). To do so, the developer would follow the steps above87

with:88

1. run Install to target Eclipse plugin89

2. test package contents on device90

3. return to step 1. if necessary91

The development workflow for the Reference and derived images themselves will92

be much more low-level and are outside the scope of this document.93

On-device Workflow94

Some work, particularly performance tuning and graphics-intense application de-95

velopment, will require testing on a target device. The workflow [above][Typical96

workflow] handles this use case, but developing on a target device can save the97

time of copying files from a development machine to the device.98

This workflow will instead look like:99

1. modify source code as needed100

2. run Install to target Eclipse plugin101

3. test package contents on device102

4. if debugging is necessary, either103

(a) run Remote app debugging Eclipse plugin; or104

(b) open secure shell (ssh) connection to target device for multi-process105

or otherwise-complex debugging scenarios106

4

5. return to step 2. if necessary107

Workflow-simplifying Plugins108

Some of the workflow steps [above][Typical worflow] will be simplified by stream-109

lining repetitive tasks and automating as much as possible.110

Install to Target111

This Eclipse plugin will automatically:112

1. build the cross-architecture Apertis app bundle113

2. copy generated ARM package to target114

3. Install package115

It will use a sysroot staging directory (as described in the document “Apertis116

Build and Integration Design”, section “App cross-compilation”) to build the117

app bundle and SSH to copy and remotely and install it on the target.118

App bundle signature validation will be disabled in the Debugging and SDK119

images, so the security system will not interfere with executing in-development120

apps.121

Remote App Debugging122

This Eclipse plugin will connect to a target device over SSH and, using infor-123

mation from the project manifest file, execute the application within GDB. The124

user will be able to run GDB commands as with local programs and will be able125

to interact with the application on the device hardware itself.126

This plugin will be specifically created for single application debugging. De-127

velopers of multi-process services will need to connect to the device manually128

to configure GDB and other tools appropriately, as it would be infeasible to129

support a wide variety of complex setups in a single plugin.130

Sysroot Updater131

This Eclipse plugin will check for a newer sysroot archive. If found, the newer132

archive will be downloaded and installed such that it can be used by the Install133

to target plugin.134

3D acceleration within VirtualBox135

Apertis will depend heavily on the Clutter library for animations in its toolkit136

and for custom animations within applications themselves. Clutter requires137

a working 3D graphics stack in order to function. Without direct hardware138

support, this requires a software OpenGL driver, which is historically very slow.139

Our proposed SDK runtime environment, VirtualBox, offers experimental 3D140

5

hardware “pass-through” to achieve adequate performance. However, at the141

time of this writing, this support is unreliable and works only on very limited142

host hardware/software combinations.143

We propose resolving this issue with the new “llvmpipe” software OpenGL driver144

for the Mesa OpenGL implementation. This is the community-supported solu-145

tion to replace the current, significantly-slower, “swrast” software driver. Both146

the upcoming versions of Fedora and Ubuntu Linux distributions will rely upon147

the “llvmpipe” driver as a fallback in the case of missing hardware support.148

The latest development version of Ubuntu 12.04, which Collabora is developing149

our Reference system images against, already defaults to “llvmpipe”. Addition-150

ally, the “llvmpipe” driver implements more portions of the OpenGL standard151

(which Clutter relies upon) than the “swrast” driver.152

In initial testing with an animated Clutter/Clutter-GTK application, llvmpipe153

performance was more than adequate for development purposes. In a Virtual-154

Box guest with 2 CPU cores and 3 GiB of RAM, demo applications using the155

Roller widget displayed approximately 20-30 frames per second and had very156

good interactivity with the llvmpipe driver. In comparison, the same program157

running with the swrast driver averaged 4 frames per second and had very poor158

interactivity.159

While this approach will not perform as well as a hardware-supported imple-160

mentation, and will vary depending on host machine specifications, it will be161

the most reliable option for a wide variety of VirtualBox host operating system,162

configuration, and hardware combinations.163

Simulating Multi-touch in VirtualBox164

Because Apertis will support multi-touch events and most VirtualBox hosts will165

only have single pointing devices, the system will need a way to simulate multi-166

touch events in software. Even with adequate hardware on the host system,167

VirtualBox does not support multiple cursors, so the simulating software must168

be fully-contained within the system images themselves.169

Software-based solution170

We propose a software-based solution for generating multi-touch events within171

the SDK. This will require a few new, small components, outlined below.172

In the intended usage, the user would use the Multi-touch gesture generator173

to perform a gesture over an application running in the Target Simulator as174

if interacting with the hardware display(s) in an Apertis system. The Gesture175

Generator will then issue commands through its uinput device and the Uinput176

Gesture Device Xorg Driver will use those commands to generate native X11177

multi-touch events. Applications running within the Target Simulator will then178

interpret those multi-touch events as necessary (likely through special events in179

the Apertis application toolkit).180

6

Multi-touch Gesture Generator181

This will be a very simple user interface with a few widgets for each type of182

gesture to generate. The developer will click on a button in the generator183

to start a gesture, then perform a click-drag anywhere within VirtualBox to184

trigger a set of multi-touch events. The generator will draw simple graphics on185

the screen to indicate the type and magnitude of the gesture as the developer186

drags the mouse cursor.187

188

We anticipate the need for two gestures commonly used in popular multi-touch189

user interfaces:190

• Pinch/zoom: the movement of a thumb and forefinger toward (zoom-191

out) or away (zoom-in) from each other. This gesture has a magnitude192

and position. The position allows, e.g., a map application to zoom in on193

the position being pinched rather than requiring a separate zoom into the194

center of the viewable area, then a drag of the map.195

– Zoom-in: simulated by initiating the pinch/zoom gesture from196

the Gesture Generator, then click-dragging up-right. The distance197

dragged will determine the magnitude of the zoom.198

– Zoom-out: the same process as for zoom-in, but in the opposite di-199

rection200

• Rotate: the movement of two points around an imaginary center point.201

Can be performed either in a clockwise or counter-clockwise direction.202

This gesture has a magnitude and position. The position allows, e.g., a203

photo in a gallery app to be rotated independent of the other photos.204

7

– Clockwise: simulated by initiating the rotate gesture, then click-205

dragging to the right. This can be imagined as drag affecting the206

top of a wheel.207

– Counter-clockwise: the same process as for clockwise, but in the208

opposite direction.209

Additional gestures could be added during the specification process, if necessary.210

211

Upon the user completing the simulated gesture, the Gesture Generator would212

issue a small number of key or movement events through a special uinput device213

(which we will refer to as the Uinput Gesture Device). Uinput is a kernel feature214

which allows “userland” software (any software which runs directly or indirectly215

8

on top of the kernel) to issue character device actions, such as key presses,216

releases, two-dimensional movement events, and so on. This uinput device will217

be interpreted by the Uinput Gesture Device Xorg Driver.218

Uinput Gesture Device Xorg Driver219

This component will interpret the input stream from our Uinput Gesture Device220

and generate X11 multi-touch events. These events would, in turn, be handled221

by the windows lying under the events.222

X11 Multi-touch Event Handling223

Windows belonging to applications running within the Target Simulator will224

need to handle multi-touch events as they would single-touch events, key presses,225

and so on. This would require to add support for multi-touch events in the226

Apertis application toolkit for applications to simply handle multi-touch events227

the same as single-touch events.228

Hardware-based solution229

An alternative to the software-based solution [above][Software-based solution]230

would be to use a hardware multi-touch pad on the host machine. This is a231

simpler solution requiring less original development though it brings a risk of232

Windows driver issues which would be outside of our control. Because of this,233

we recommend Collabora perform further research before finalizing upon this234

solution if this is preferred over the Software-based solution.235

The touch pad hardware would need to be well-supported in Linux but not236

necessarily the host operating system (including Windows) because VirtualBox237

supports USB pass-through. This means that output from the touch pad would238

simply be copied from the host operating system into VirtualBox, where Xorg239

would generate multi-touch events for us.240

The best-supported multi-touch device for Linux is Apple’s Magic Trackpad.241

This device uses a Bluetooth connection. Many Bluetooth receivers act as USB242

devices, allowing pass-through to VirtualBox. In case a host machine does not243

have a built-in Bluetooth receiver or has a Bluetooth receiver but does not route244

Bluetooth data through USB, an inexpensive Bluetooth-to-USB adapter could245

be used.246

Collabora has verified that multi-touch gestures on an Apple Magic Trackpad247

plugged into a Linux host can be properly interpreted within Debian running248

within VirtualBox. This suggests that a hardware-based solution is entirely249

feasible.250

Hardware Sourcing Risks251

Collabora investigated risks associated with selecting a single hardware provider252

for this multi-touch solution. The known risks at this point include:253

9

1. Apple has a history of discontinuing product lines with little warning254

2. As of this writing, there appear to be few alternative multi-touch pointing255

devices which are relatively inexpensive and support arbitrary multi-touch256

movements257

In the worst case scenario, Apple could discontinue the Magic Trackpad or in-258

troduce a new version which does not (immediately) work as expected within259

Linux. With no immediate drop-in replacement for the Magic Trackpad, there260

would not be a replacement to recommend internally and to third-party devel-261

opers using the Apertis SDK.262

However, there are several mitigating factors that should make these minor263

risks:264

1. Inventory for existing Magic Trackpads would not disappear immediately265

upon discontinuation of the product266

2. Discontinuation of a stand-alone multi-touch trackpad entirely is very un-267

likely due to Apple’s increasingly-strong integration of multi-touch ges-268

tures within iOS and Mac OS itself.269

3. In case Apple replaces the Magic Trackpad with a Linux-incompatible270

version, there is significant interest within the Linux community to fix271

existing drivers to support the new version in a timely manner. For in-272

stance, Canonical multi-touch developers use the Magic Trackpad for their273

development and will share Apertis’s sourcing concerns as well.274

4. As an ultimate fallback, Multi-touch gesture generator can be recom-275

mended as an alternative source of multi-touch input.276

Third-party Application Validation Tools277

Two-step Application Validation Process278

The third-party application process will contain two main validation steps which279

mirror the application submission processes for Android and iOS apps. The first,280

SDK-side validation checks will be performed by a tool described below. Devel-281

opers may perform SDK-side validation as often as they like before submitting282

their application for approval. This is meant to automatically catch as many283

errors in an application as soon as possible to meet quality requirements for284

application review.285

The second step of the application validation process is to validate that an286

application meets the app store quality requirements. It is recommended to set287

up a process where new applications automatically get run through this same288

Eclipse plugin as an initial step in review. This will guarantee applications meet289

the latest automated validation checks (which may not have been met within290

the developer’s SDK if their Eclipse plugin were old). Developers will be able291

to easily stay up-to-date with the validation tool by applying system package292

10

updates within the SDK, so this difference can be minimized by a small amount293

of effort on the developer’s part. Applications which pass this initial check will294

then continue to a manual evaluation process.295

App Validation Tool296

To streamline the third-party application submission process (which will be de-297

tailed in another document), Collabora will provide an Eclipse plugin to perform298

a number of299

SDK-side validation checks up on the application in development. Collabora300

proposed checks are:301

• Application contains valid developer signing key – developers must302

create a certificate to sign their application releases so verifying the source303

of application updates can be guaranteed. This check will ensure that304

the certificate configured for the application meets basic requirements on305

expiration date and other criteria.306

• Manifest file is valid – the application manifest file, which will be used307

in the software management of third-party applications on the platform,308

must meet a number of basic requirements including a developer name,309

application categories, permissions, minimum SDK API, and more.310

• Application builds from cleaned source tree – this step will delete311

files in the source tree which are neither included in the project nor belong312

to the version control system and perform a full release build for the313

ARMHF architecture. Build warnings will be permitted but build errors314

will fail this check.315

• AppArmor profile is valid – the application’s AppArmor profile defi-316

nition must not contain invalid syntax or conflict with the Apertis global317

AppArmor configuration318

Third-party application validation will be specified in depth in another docu-319

ment.320

General approach to third-party applications321

In most cases, third-party applications should not need to explicitly validate322

their access to specific system resources, delegating as much as possible to the323

SDK API or to other parts of the system. Preferably, these applications will324

specify system resource requirements in their manifest, such as permissions the325

application needs to function, network requirements, and so on. The main326

advantages of having these in the manifest file are using shared code to perform327

some of the actual run-time resource requests.328

Note that this strategy implies a trade-off between how simple it is to write an329

application and how complex the supporting SDK and system components need330

11

to be to provide that simplicity. That is to say, it often makes sense to impose331

complexity onto applications, in particular when it’s expected that only a few332

will have a given requirement or use case. This general approach should be kept333

in mind while designing the SDK and any other interfaces the system has with334

third-party applications and their manifests.335

12

	Software Development Kit
	Definitions
	Software Development Kit (SDK) Purpose
	API/ABI Stability Guarantees
	Reference System Image Composition
	System Image Software Licenses
	Development Workflow
	Typical Workflow
	On-device Workflow
	Workflow-simplifying Plugins

	3D acceleration within VirtualBox
	Simulating Multi-touch in VirtualBox
	Software-based solution
	Hardware-based solution

	Third-party Application Validation Tools
	Two-step Application Validation Process
	App Validation Tool

	General approach to third-party applications

