
Sensors and actuators

Contents1

Sensors and actuators 22

Introduction . 23

Terminology and concepts . 24

Vehicle . 25

Intra-vehicle network . 26

Inter-vehicle network . 27

Sensor . 38

Actuator . 39

Device . 310

Use cases . 311

Augmented reality parking . 312

Virtual mechanic . 313

Petrol station finder . 414

Sightseeing application bundle . 415

Changing bundle functionality when driving at speed 416

Changing audio volume with vehicle or cabin noise 417

Night mode . 518

Weather feedback or traffic jam feedback 519

Insurance bundle . 520

Driving setup bundle . 521

Odour detection . 622

Air conditioning control . 623

Agricultural vehicle . 624

Roof box . 625

Truck installations . 726

Compromised application bundle 727

Ethernet intra-vehicle network 728

Development against the SDK . 729

Non-use-cases . 730

Bluetooth wrist watch and the Internet of Things 731

Car-to-car and car-to-infrastructure communications 832

Buddied and vehicle fleet communications 833

Requirements . 934

Enumeration of devices . 935

Enumeration of vehicles . 936

Retrieving data from sensors . 937

Sending data to actuators . 938

Network independence . 939

Bounded latency of processing sensor data 1040

Extensibility for OEMs . 1041

Third-party backends . 1042

Third-party backend validation 1043

Notifications of changes to sensor data 1044

Uncertainty bounds . 1145

2

Failure feedback . 1146

Timestamping . 1147

Triggering bundle activation . 1148

Bulk recording of sensor data . 1249

Sensor security . 1250

Actuator security . 1251

App store knowledge of device requirements 1252

Accessing devices on multiple vehicles 1253

Third-party accessories . 1354

SDK hardware support . 1355

Background on intra-vehicle networks 1356

Existing sensor systems . 1357

W3C Vehicle Information Service Specification (VISS) 1458

GENIVI Web API Vehicle 1459

Apple HomeKit . 1560

Apple External Accessory API 1561

iOS CarPlay . 1662

Android Auto . 1663

MirrorLink . 1664

Android Sensor API . 1765

Automotive Message Broker . 1766

AllJoyn . 1867

Approach . 1968

Overall architecture . 1969

Vehicle device daemon . 1970

Hardware and app APIs . 2071

Hardware API compliance testing 2472

SDK API compliance testing and simulation 2573

SDK hardware . 2674

Trip logging of sensor data . 2675

Properties vs devices . 2676

Property naming . 2777

High bandwidth or low latency sensors 2778

Timestamps and uncertainty bounds 2879

Registering triggers and actions 2880

Bulk recording of sensor data . 2981

Security . 2982

Suggested roadmap . 3683

Requirements . 3784

Open questions . 3885

Summary of recommendations . 3986

Sensors and Actuators API 4087

Rhosydd API Current State . 4088

Considerations to align Rhosydd to the new VISS API 4089

New vs Old Specification . 4190

3

Rhosydd New Changes . 4291

Advantages . 4292

Conclusion . 4293

Appendix: W3C API . 4294

Sensors and actuators95

Introduction96

This documents possible approaches to designing an API for exposing vehicle97

sensor information and allowing interaction with actuators to application bun-98

dles on an Apertis system.99

The major considerations with a sensors and actuators API are:100

• Bandwidth and latency of sensor data such as that from parking cameras101

• Enumeration of sensors and actuators102

• Support for multiple vehicles or accessories103

• Support for third-party and OEM accessories and customisations104

• Multiplexing of access to sensors105

• Privilege separation between application bundles using the API106

• Policy to restrict access to sensors (privacy sensitive)107

• Policy to restrict access to actuators (safety critical)108

Terminology and concepts109

Vehicle110

For the purposes of this document, a vehicle may be a car, car trailer, motorbike,111

bus, truck tractor, truck trailer, agricultural tractor, or agricultural trailer,112

amongst other things.113

Intra-vehicle network114

The intra-vehicle network connects the various devices and processors through-115

out a vehicle. This is typically a CAN or LIN network, or a hierarchy of such116

networks. It may, however, be based on Ethernet or other protocols.117

The vehicle network is defined by the OEM, and is statically defined — all de-118

vices which are supported by the network have messages or bandwidth allocated119

for them at the time of manufacture. No devices which are not known at the120

time of manufacture can be supported by the vehicle network.121

4

Inter-vehicle network122

An inter-vehicle network connects two or more physically connected vehicles123

together for the purposes of exchanging information. For example, a network124

between a truck tractor and trailer.125

An inter-vehicle network (for the purposes of this document) does not cover126

transient communications between separate cars on a motorway, for example;127

or between a vehicle and static roadside infrastructure it passes. These are128

car-to-car (C2C) and car-to-infrastructure (C2X) communications, respectively,129

and are handled separately.130

Sensor131

A sensor is any input device which is connected to the vehicle’s network but132

which is not a direct part of the dashboard user interface. For example: parking133

cameras, ultrasonic distance sensors, air conditioning thermometers, light level134

sensors, etc.135

Actuator136

An actuator is any output device which is connected to the vehicle’s network137

but which is not a direct part of the dashboard user interface. For example:138

air conditioning heater, door locks, electric window motors, interior lights, seat139

height motors, etc.140

Device141

A sensor or actuator.142

Use cases143

A variety of use cases for application bundle usage of sensor data are given144

below. Particularly important discussion points are highlighted at the bottom145

of each use case.146

Augmented reality parking147

When parking, the feed from a rear-view camera should be displayed on the148

screen, with an overlay showing the distance between the back of the vehicle149

and the nearest object, taken from ultrasonic or radar distance sensors.150

The information from the sensors has to be synchronised with the camera, so151

correct distance values are shown for each frame. The latency of the output152

image has to be low enough to not be noticed by the driver when parking at153

low speeds (for example, 5km·h).154

5

Virtual mechanic155

Provide vehicle status information such as tyre pressure, engine oil level, washer156

fluid level and battery status in an application bundle which could, for example,157

suggest routine maintenance tasks which need to be performed on the vehicle.158

(Taken from http://www.w3.org/2014/automotive/vehicle_spec.html#h2_159

abstract.)160

Trailer161

The driver attaches a trailer to their vehicle and it contains tyre pressure sensors.162

These should be available to the virtual mechanic bundle.163

Petrol station finder164

Monitor the vehicle’s fuel level. When it starts to get low, find nearby petrol165

stations and notify the driver if they are near one. Note that this requires166

programs to be notified of fuel level changes while not in the foreground.167

Sightseeing application bundle168

An application bundle could highlight sights of interest out of the windows by169

combining the current location (from GPS) with a direction from a compass170

sensor. Using a compass rather than the GPS’ velocity angle allows the bundle171

to work even when the vehicle is stationary.172

Privacy concern: Any application bundle which has access to compass data173

can potentially use dead reckoning to track the vehicle’s location, even without174

access to GPS data.175

Basic model vehicle176

If a vehicle does not have a compass sensor, the sightseeing bundle cannot177

function at all, and the Apertis store should not allow the user to install it on178

their vehicle.179

Changing bundle functionality when driving at speed180

An application bundle may want to voluntarily change or disable some of its181

features when the vehicle is being driven (as opposed to parked), or when it182

is being driven fast (above a cut-off speed). It might want to do this to avoid183

distracting the driver, or because the features do not make sense when the184

vehicle is moving. This requires bundles to be able to access speedometer and185

driving mode information.186

If the application bundle is using a cut-off speed for this decision, it should not187

have to continually monitor the vehicle’s speed to determine whether the cut-off188

has been reached.189

6

http://www.w3.org/2014/automotive/vehicle_spec.html#h2_abstract
http://www.w3.org/2014/automotive/vehicle_spec.html#h2_abstract
http://www.w3.org/2014/automotive/vehicle_spec.html#h2_abstract

Changing audio volume with vehicle or cabin noise190

Bundles may want to adjust their audio output volume, or disable audio output191

entirely, in response to changes in the vehicle’s cabin or engine noise levels. For192

example, a game bundle could reduce its effects volume if a loud conversation193

can be heard in the cabin; but it might want to increase its effects volume if194

engine noise increases.195

Privacy concern: This should be implemented by granting access to overall196

‘volume level’ information for different zones in the vehicle; but not by grant-197

ing access to the actual audio input data, which would allow the bundle to198

record conversations. The overall volume level information should be sufficiently199

smoothed or high-latency that a malicious application cannot infer audio infor-200

mation from it.201

Night mode202

Programs may wish to change their colour scheme according to the ambient203

lighting level in a particular zone in the cabin, for example by switching to a204

‘night mode’ with a dark colour scheme if driving at night, but not if an interior205

light is on. This requires bundles to be able to read external light sensors and206

the state of internal lights.207

Weather feedback or traffic jam feedback208

A weather bundle may want to crowd-source information about local weather209

conditions to corroborate its weather reports. Information from external rain,210

temperature and atmospheric pressure sensors could be collected at regular211

intervals – even while the weather bundle is not active – and submitted to212

an online weather service as network connectivity permits.213

Similarly, a traffic jam or navigation bundle may want to crowd-source informa-214

tion about traffic jams, taking input from the speedometer and vehicle separa-215

tion distance sensors to report to an online service about the average speed and216

vehicle separation in a traffic jam.217

Insurance bundle218

A vehicle insurance company may want to offer lower insurance premiums to219

drivers who install its bundle, if the bundle can record information about their220

driving safety and submit it to the insurance company to give them more infor-221

mation about the driver’s riskiness. This would need information such as driving222

duration, distances driven, weather conditions, acceleration, braking frequency,223

frequency of using indicator lights, pitch, yaw and roll when cornering, and224

potentially vehicle maintenance information. It would also require access to225

unique identifiers for the vehicle, such as its VIN. The data would need to be226

collected regardless of whether the vehicle is connected to the internet at the227

time — so it may need to be stored for upload later.228

7

Privacy concern: Unique identification information like a VIN should not be229

given to untrusted bundles, as they may use it to track the user or vehicle.230

Driving setup bundle231

An application bundle may want to control the driving setup — the position of232

the steering wheel, its rake, the position of the wing mirrors, the seat position233

and shape, whether the vehicle is in sport mode, etc. If a guest driver starts using234

the vehicle, they could import their settings from the same bundle on their own235

vehicle, and the bundle would automatically adjust the physical driving setup236

in the vehicle to match the user’s preferences. The bundle may want to restrict237

these changes to only happen while the vehicle is parked.238

Odour detection239

A vehicle manufacturer may have invented a new type of interior sensor which240

can detect foul odours in the cabin. They want to integrate this into an ap-241

plication bundle which will change the air conditioning settings temporarily to242

clear the odour when detected. The Sensors and Actuators API currently has243

no support for this new sensor. The manufacturer does not expect their bundle244

to be used in other vehicles.245

Air conditioning control246

An application bundle which connects to wrist watch body monitors on each247

of the passengers (through an out-of-band channel like Bluetooth, which is out248

of the scope of this document; see Bluetooth wrist watch and the Internet of249

Things may want to change the cabin temperature in response to thermometer250

readings from passengers’ watches.251

Automatic window feedback252

In order to do this, the bundle may also need to close the automatic windows,253

but one of the passengers has their arm hanging out of the window and the254

hardware interlock prevents it closing. The bundle must handle being unable255

to close the window.256

Agricultural vehicle257

Apertis is used by an agricultural manufacturer to provide an IVI system for258

drivers to use in their latest tractor model. The manufacturer provides a pre-259

installed app for controlling their own brand of agricultural accessories for the260

tractor, so the driver can use it to (for example) control a tipping trailer and261

a baler which are hitched to each other behind the tractor, and also control a262

bale spear attached to the front of the tractor.263

8

Roof box264

A car driver adds a roof box to their car, provided by a third party, containing265

a safety sensor which detects when the box is open. The built-in application266

bundle for alerting the driver to doors which are open when the vehicle starts267

moving should be able to detect and use this sensor to additionally alert the268

driver if the roof box is open when they start moving.269

Truck installations270

Trucks are sold as a basis ‘vanilla’ truck with a special installation on top,271

which is customised for the truck’s intended use. For example, a rubbish truck,272

tipping truck or police truck. The installation is provided by a third party273

who has a relationship with the basis truck manufacturer. Each installation274

has specific sensors and actuators, which are to be controlled by an application275

bundle provided by the third party or by the manufacturer.276

Compromised application bundle277

An application bundle on the system, A, is installed with permissions to adjust278

the driver’s seat position, which is one of the features of the bundle. Another279

application bundle, B, is installed without such permissions (as they are not280

needed for its normal functionality).281

Safety critical: An attacker manages to exploit bundle B and execute arbitrary282

code with its privileges. The attacker must not be able to escalate this exploit283

to give B permission to use actuators attached to the system, or extra sensors.284

Similarly, they must not be able to escalate the exploit to gain the privileges of285

bundle A, and hence bundle A’s permissions to adjust the driver’s seat position.286

Ethernet intra-vehicle network287

A vehicle manufacturer wants to support high-bandwidth devices on their intra-288

vehicle network, and decides to use Ethernet for all intra-vehicle communica-289

tions, instead of a more traditional CAN or LIN network. Their use of a differ-290

ent network technology should not affect enumeration or functionality of devices291

as seen by the user.292

Development against the SDK293

An application developer wants to use a local gyroscope sensor attached to their294

development machine to feed input to their application while they are developing295

and testing it using the SDK.296

9

Non-use-cases297

Bluetooth wrist watch and the Internet of Things298

A passenger gets into the vehicle with a Bluetooth wrist watch which monitors299

their heart rate and various other biological variables. They launch their health300

monitor bundle on the IVI display, and it connects to their watch to download301

their recent activity data.302

This is not a use case for the Sensors and Actuators API; it should be handled303

by direct Bluetooth communication between the health monitor bundle and the304

watch. If the Sensors and Actuators API were to support third-party devices305

(as opposed to ones specified and installed by the vehicle manufacturer or sup-306

pliers), having full support for all available devices would become a lot harder.307

Additionally, devices would then appear and disappear while the vehicle was308

running (for example, if the user turned off their watch’s Bluetooth connection309

while driving); this is not possible with fixed in- vehicle sensors, and would310

complicate the sensor enumeration API.311

More generally, this use-case is a specific case of the internet of things (IoT),312

which is out of scope for this design for the reasons given above. Additionally,313

supporting IoT devices would mean supporting wireless communications as part314

of the sensors service, which would significantly increase its attack surface due315

to the complexity of wireless communications, and the fact they enable remote316

attacks.317

Car-to-car and car-to-infrastructure communications318

In C2C and C2X communications, vehicles share data with each other as they319

move into range of each other or static roadside infrastructure. This information320

may be anything from braking and acceleration information shared between321

convoys of vehicles to improve fuel efficiency, to payment details shared from a322

car to toll booth infrastructure.323

While many of the use cases of C2C and C2X cover sharing of sensor data, the324

data being shared is typically a limited subset of what’s available on one vehi-325

cle’s network. Due to the dynamic nature of C2C and C2X networks, and the326

greater attack surface caused by the use of more complex technologies (radio327

communications rather than wired buses), a conservative approach to security328

suggests implementing C2C and C2X on a use-case-by-use-case basis, using sep-329

arate system components to those handling intra-vehicle sensors and actuators.330

This ensures that control over actuators, which is safety critical, remains in a331

separate security domain from C2C and C2X, which must not have access to332

actuators on the local vehicle. See Security.333

An initial suggestion for C2C and C2X communications would be to implement334

them as a separate service which consumes sensor data from the sensors and335

actuators service just like other applications.336

10

Buddied and vehicle fleet communications337

Similarly, long-range communications of sensor data between buddied vehicles338

or vehicles operating in a fleet (for example, a haulage or taxi fleet) should339

be handled separately from the sensors and actuators service, as such systems340

involve network communications. Typical use cases here would be reporting341

speed and fuel usage information from trucks or taxis back to headquarters; or342

letting two friends know each others’ locations and traffic conditions when both343

doing the same journey.344

Requirements345

Enumeration of devices346

An application bundle must be able to enumerate devices in the vehicle, includ-347

ing information about where they are located in the vehicle (for example, so348

that it can adjust the position and setup of the driver’s seat but not others (see349

Driving setup bundle)).350

It is expected that the set of devices in a vehicle may change dynamically while351

the vehicle is running, for example if a roof box were added while the engine352

was running (Roof box).353

Enumeration is particularly important for bundles, as the set of sensors in a354

particular vehicle will not change, but the set of sensors seen by a bundle across355

all the vehicles it’s installed in will vary significantly.356

Enumeration of vehicles357

An application bundle must be able to enumerate vehicles connected to the358

inter-vehicle network, for example to discover the existence of hitched trailers359

or agricultural vehicles (Trailer, Agricultural vehicle).360

It is expected that the set of vehicles may change dynamically while the vehicles361

are running.362

Retrieving data from sensors363

An application bundle must be able to retrieve data from sensors. This data364

must be strongly typed in order to minimise the possibility of a bundle mis-365

interpreting it, or sensors from different manufacturers using different units,366

for example. Sensor data could vary in type from booleans (see Night mode)367

through to streaming video data (see Augmented reality parking). Sensor data368

may be processed by the system to make it more useful for application bundles;369

they do not need direct access to raw sensor data.370

11

Sending data to actuators371

An application bundle must be able to send data to actuators (including invok-372

ing methods on them). This data must be strongly typed in order to minimise373

the possibility of a bundle misinterpreting it, or actuators from different man-374

ufacturers using different units, for example. Actuator data could vary in type375

from booleans through to enumerated types (see Driving setup bundle) and376

possibly larger data streams, though no concrete use cases exist for that.377

Network independence378

The API should be independent of the network used to connect to devices —379

whether it be Ethernet, LIN or CAN; or whether the device is connected directly380

to a host processor (Ethernet intra-vehicle network).381

Bounded latency of processing sensor data382

Certain sensor data has bounds on its latency. For example, pitch, yaw and383

roll information typically arrive as angular rate from sensors, and have to be384

integrated over time to be useful to application bundles — if sensor readings385

are missed, accuracy decreases. Sensor readings should be processed within the386

latency limits specified by the sensors. The limits on forwarding this processed387

data to bundles are less strict, though it is expected to be within the latency388

noticeable by humans (around 20ms) so that it can be displayed in real time389

(see Augmented reality parking, Sightseeing application bundle, Changing audio390

volume with vehicle or cabin noise).391

Extensibility for OEMs392

New types of device may be developed after the Sensors and Actuators API is393

released. As the set of sensors in a vehicle does not vary after release, already-394

deployed versions of the API do not need to handle unknown devices. However,395

there must be a mechanism for OEMs or third parties working with them to396

define new device types when developing a new vehicle or an installation or397

accessory to go with it. In order for new devices to be usable by non-OEM398

application bundle authors, the Sensors and Actuators API must be updatable399

or extensible to support them. (Odour detection, Truck installations.)400

Third-party backends401

If an OEM or third party produces a new device which can be connected to402

an existing vehicle, some code needs to exist to allow communication between403

the device and the Apertis sensors and actuators service. This code must be404

written by the device manufacturer, as they know the hardware, and must be405

installable on the Apertis system before or after vehicle production (so as a406

system or non-system application). (See Agricultural vehicle, Roof box, Truck407

installations.)408

12

Third-party backend validation409

If a third-party device is exposed to the sensors and actuators service, the third410

party might not be one who has contributed to or used Apertis before. There411

must be a process for validating backends for the sensors and actuators system,412

to ensure they have a certain level of code quality and security, in order to413

reduce the attack surface of the service as a whole. (See Roof box.)414

Notifications of changes to sensor data415

All sensor data changes over time, so the API must support notifying application416

bundles of changes to sensor data they are interested in, without requiring the417

bundle to poll for updates (see Petrol station finder, Sightseeing application418

bundle, Changing bundle functionality when driving at speed, Changing audio419

volume with vehicle or cabin noise, Night mode, Odour detection).420

Application bundles should be able to request notifications only when a sensor421

value crosses a given threshold, to avoid unnecessary notifications (see Changing422

bundle functionality when driving at speed).423

Uncertainty bounds424

Sensors are not perfectly accurate, and additionally a sensor’s accuracy may425

vary over time; each sensor measurement should be provided with uncertainty426

bounds. For example, the accuracy of geolocation by mobile phone tower varies427

with your location.428

This is especially possible with data aggregated from multiple sensors, where429

the aggregate accuracy can be statistically modelled (for example, distance cal-430

culation from multiple sensors in Weather feedback or traffic jam feedback).431

Failure feedback432

As actuators are physical devices, they can fail. The API cannot assume au-433

tomatic, immediate or successful application of its changes to properties, and434

needs to allow for feedback on all property changes.435

For example, the air conditioning coolant on an older vehicle might have leaked,436

leaving the air conditioning system unable to cool the cabin effectively. Appli-437

cation bundles which wish to set the temperature need to have feedback from a438

thermometer to work out whether the temperature has reached the target value439

(see Air conditioning control).440

Another example is failure to close windows: Automatic window feedback.441

Timestamping442

In-vehicle networks (especially Ethernet) may have variable latency. In order443

to correlate measurements from multiple sensors on the end of connections of444

13

varying latency, each measurement should have an associated timestamp, added445

at the time the measurement was recorded (see Augmented reality parking,446

Sightseeing application bundle).447

Triggering bundle activation448

Various use cases require a bundle to be able to trigger actions based on sensor449

data reaching a certain value, even if the program is not running at that time450

(see Petrol station finder, Changing audio volume with vehicle or cabin noise,451

Odour detection). This requires some operating system service to monitor a452

list of trigger conditions even while the programs which set those triggers are453

not running, and start the appropriate program so that it can respond to that454

trigger.455

Bulk recording of sensor data456

Some bundles require to be able to regularly record sensor measurements, with457

the intention of processing them (for example, uploading them to an online458

service) at a later time (see Weather feedback or traffic jam feedback, Insurance459

bundle). This is not latency sensitive. As an optimisation, a system service460

could record the sensor readings for them, to avoid waking up the programs461

regularly.462

Data recorded in this way must only be accessible to the application bundle463

which requested it be recorded.464

The requesting application bundle is responsible for processing the data period-465

ically, and deleting it once processed. The system must be able to periodically466

overwrite recorded data if running low on space.467

Sensor security468

As highlighted by the privacy concerns in several of the use cases (Sightseeing469

application bundle, Changing audio volume with vehicle or cabin noise, Insur-470

ance bundle), there are security concerns with allowing bundles access to sensor471

data. The system must be able to restrict access to some or all types of sensor472

data unless the user has explicitly granted a bundle access to it. Bundles with473

access to sensor data must be in separate security domains to prevent privilege474

escalation (Compromised application bundle).475

Actuator security476

Control of actuators is safety critical but not privacy sensitive (unlike sensors).477

The system must be able to restrict write access to some or all types of actuator478

unless the user has explicitly granted a bundle access to it. Bundles with access479

to actuators must be in separate security domains to prevent privilege escalation480

(Compromised application bundle).481

14

App store knowledge of device requirements482

The Apertis store must know which devices (sensors and actuators) an appli-483

cation bundle requires to function, and should not allow the user to install a484

bundle which requires a device their vehicle does not have, or the bundle would485

be useless (Basic model vehicle).486

Accessing devices on multiple vehicles487

The API must support accessing properties for multiple vehicles, such as hitched488

agricultural trailers (Agricultural vehicle) or car trailers (Trailer). These vehi-489

cles may appear dynamically while the IVI system is running; for example, in490

the case where the driver hitches a trailer with the engine running.491

Note: This requirement explicitly does not support C2C or C2X, which are out492

of scope of this document. (See Car-to-car and car-to-infrastructure communi-493

cations).494

Third-party accessories495

The API must support accessing properties of third-party accessories — either496

dynamically attached to the vehicle (Roof box) or installed during manufacture497

(Truck installations).498

SDK hardware support499

The SDK must contain a backend for the system which allows appropriate500

hardware which is attached to the developer’s machine to be used as sensors or501

actuators for development and testing of applications (see Development against502

the SDK).503

This backend must not be available in target images.504

Background on intra-vehicle networks505

For the purposes of informing the interface design between the Sensors and506

Actuators API and the underlying intra-vehicle network, some background in-507

formation is needed on typical characteristics of intra-vehicle networks.508

CAN and LIN are common protocols in use, though future development may509

favour Ethernet or other protocols. In all cases, the OEM statically defines all510

protocols, data structures, and devices which can be on the network. Bandwidth511

is allocated for all devices at the time of manufacture; even for devices which512

are only optionally connected to the network, either because they’re a premium513

vehicle feature, or because they are detachable, such as trailers. In these cases,514

data structures on the network relating to those devices are empty when the515

devices are not connected.516

Sometimes flags are used in the protocol, such as ‘is a trailer connected?’.517

15

There are no common libraries for accessing vehicle networks: they differ be-518

tween OEMs.519

Existing sensor systems520

This chapter describes the approaches taken by various existing systems for521

exposing sensor information to application bundles, because it might be useful522

input for Apertis’ decision making. Where available, it also provides some523

details of the implementations of features that seem particularly interesting524

or relevant.525

W3C Vehicle Information Service Specification (VISS)526

The W3C Vehicle Information Service Specification1 defines a WebSocket based527

API for a Vehicle Information Service (VIS) to enable client applications to528

get, set, subscribe and unsubscribe to vehicle signals and data attributes. This529

specification defines a number of methods for accessing vehicle data which are530

strictly agnostic to the data model Vehicle Signal Specification2.531

The Vehicle Signal Specification (VSS) focuses on vehicle signals, in the sense532

of classical sensors and actuators with the raw data communicated over vehicle533

buses and data which is more commonly associated with the infotainment system534

alike. This defines a ‘tree-like’ logical taxonomy of the vehicle, (formally a535

Directed Acyclic Graph), where major vehicle structures (e.g. body, engine)536

are near the top of the tree and the logical assemblies and components that537

comprise them, are defined as their child nodes.538

The VSS supports both extensibility and the ability to define private branches.539

GENIVI Web API Vehicle540

The [GENIVI Web API Vehicle] (sic) is a proof of concept API for exposing and541

manipulating vehicle information to GENIVI apps via a JavaScript API. It is542

very similar to the W3C Vehicle Information Access API, and seems to expose543

a very similar set of properties.544

The Web API Vehicle3 is a proxy for exposing a separate Vehicle Interface API545

within a HTML5 engine. The Vehicle Interface API itself is apparently a D-Bus546

API for sharing vehicle information between the CAN bus and various clients,547

including this Web API Vehicle and any native apps. Unfortunately, the Vehicle548

Interface API seems to be unspecified as of August 2015, at least in publicly549

released GENIVI documents.550

1https://www.w3.org/TR/vehicle-information-service/
2https://github.com/GENIVI/vehicle_signal_specification
3http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/

WebAPIforVehicleData.pdf;hb=HEAD

16

https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleData.pdf;hb=HEAD
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleData.pdf;hb=HEAD
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleData.pdf;hb=HEAD

http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_551

plain;f=doc/WebAPIforVehicleDataRI.pdf;hb=HEAD Section552

2.2.3553

The Web API Vehicle has the same features and scope as the W3C API, but its554

implementation is clumsier, relying a lot more on seemingly unstructured magic555

strings for accessing vehicle properties.556

http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_557

plain;f=doc/WebAPIforVehicleData.pdf;hb=HEAD558

It was last publicly modified in May 2013, and might not be under development559

any more. Furthermore, a lot of the wiki links in the specification link to private560

and inaccessible data on collab.genivi.org.561

Apple HomeKit562

Apple HomeKit4 is an API to allow apps on Apple devices to interact with563

sensors and actuators in a home environment, such as garage doors, thermostats,564

thermometers and light switches, amongst others. It is designed explicitly for the565

home environment, and does not consider vehicles. However, as it is effectively566

an API for allowing interactions between sandboxed apps and external sensors567

and actuators, it bears relevance to the design of such an API for vehicles.568

At its core, HomeKit allows enumeration of devices (‘accessories’) in a home.569

A large part of its API is dedicated to grouping these into homes, rooms, ser-570

vice groups and zones so that collections of accessories can be interacted with571

simultaneously.572

Each accessory implements one or more ‘services’ which are defined interfaces573

for specific functionality, such as a light switch interface, or a thermostat inter-574

face. Each service can expose one or more ‘characteristics’ which are readable575

or writeable properties of that interface, such as whether a light is on, the cur-576

rent temperature measured by a thermostat, or the target temperature for the577

thermostat.578

It explicitly maintains separation between current and target states for certain579

characteristics, such as temperature controlled by a thermostat, acknowledging580

that changes to physical systems take time.581

A second part of the API implements ‘actions’ based on sensor values, which are582

arbitrary pieces of code executed when a certain condition is met. Typically,583

this would be to set the value of a characteristic on some actuator when the584

input from another sensor meets a given condition. For example, switching on a585

group of lights when the garage door state changes to ‘open’ as someone arrives586

in the garage.587

4https://developer.apple.com/homekit/

17

http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleDataRI.pdf;hb=HEAD
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleDataRI.pdf;hb=HEAD
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleDataRI.pdf;hb=HEAD
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleData.pdf;hb=HEAD
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleData.pdf;hb=HEAD
http://git.projects.genivi.org/?p=web-api-vehicle.git;a=blob_plain;f=doc/WebAPIforVehicleData.pdf;hb=HEAD
https://developer.apple.com/homekit/
https://developer.apple.com/homekit/

Critically, triggers and actions are handled by the iOS operating system, so are588

still checked and executed when the app which created them is not active.589

HomeKit has a [simulator] for developing apps against.590

Apple External Accessory API591

As a precursor to HomeKit, Apple also supports an External Accessory API5,592

which allows any iOS device to interact with accessories attached to the device593

(for example, through Bluetooth).594

In order to use the External Accessory API, an app must list the accessory595

protocols it supports in its app manifest. Each accessory supports one or more596

protocols, defined by the manufacturer, which are interfaces for aspects of the597

device’s functionality. They are equivalent to the ‘services’ in the HomeKit API.598

The code to implement these protocols is provided by the manufacturer, and599

the protocols may be proprietary or standard.600

Each accessory exposes versioning information6 which can be used to determine601

the protocol to use.602

All communication with accessories is done via sessions7, rather than one-shot603

reads or writes of properties. Each session is a bi-directional stream along which604

the accessory’s protocol is transmitted.605

iOS CarPlay606

iOS CarPlay8 is a system for connecting an iOS device to a car’s IVI system,607

displaying apps from the phone on the car’s display and allowing those apps to608

be controlled by the car’s touchscreen or physical controls. It does not give9 the609

iOS device access to car sensor data, and hence is not especially relevant to this610

design.611

It does not10 (as of August 2015) have an API for integrating apps with the IVI612

display.613

Most vehicle manufacturers have pledged support for it in the coming years.614

Android Auto615

Android Auto11 is very similar to iOS CarPlay: a system for connecting a phone616

5https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/
Introduction/Introduction.html

6https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/
EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber

7https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/
EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory

8http://www.apple.com/uk/ios/carplay/
9http://www.tomsguide.com/us/apple-carplay-faq,news-18450.html

10https://developer.apple.com/carplay/
11https://www.android.com/auto/

18

https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory
http://www.apple.com/uk/ios/carplay/
http://www.tomsguide.com/us/apple-carplay-faq,news-18450.html
https://developer.apple.com/carplay/
https://www.android.com/auto/
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introduction/Introduction.html
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory
http://www.apple.com/uk/ios/carplay/
http://www.tomsguide.com/us/apple-carplay-faq,news-18450.html
https://developer.apple.com/carplay/
https://www.android.com/auto/

to the vehicle’s IVI system so it can use the display and touchscreen or physical617

controls. As with CarPlay, it does not give the Android device access to vehicle618

sensor data, although (as of August 2015) that is planned for the future.619

As of August 2015, it has an API for apps12, allowing audio and messaging apps620

to improve their integration with the IVI display.621

Most vehicle manufacturers have pledged support for it in the coming years.622

MirrorLink623

MirrorLink13 is a proprietary system for integrating phones with the IVI display624

— it is similar to iOS CarPlay and Android Auto, but produced by the Car625

Connectivity Consortium14 rather than a device manufacturer like Apple or626

Google.627

The specifications for MirrorLink are proprietary and only available to registered628

developers. In their brochure15 (page 2), it is stated that support for allowing629

apps access to sensor data is planned for the future (as of 2014).630

MirrorLink is apparently the technology behind Microsoft’s Windows in the631

Car16 system, which was announced in April 2014.632

Android Sensor API633

Android’s Sensor API17 is a mature system for accessing mobile phone sensors.634

There are a more constrained set of sensors available in phones than in vehi-635

cles, hence the API exposes individual sensors, each implementing an interface636

specific to its type of sensor (for example, accelerometer, orientation sensor or637

pressure sensor). The API places a lot of emphasis on the physical limitations of638

each sensor, such as its range, resolution, and uncertainty of its measurements.639

The sensors required by an app are listed in its manifest file, which allows the640

Google Play store to filter apps by whether the user’s phone has all the necessary641

sensors.642

As Android runs on a multitude of devices from different manufacturers, each643

with different sensors, enumeration of the available sensors is also an emphasis644

of the API, using its SensorManager18 class.645

12https://developer.android.com/training/auto/index.html
13http://www.mirrorlink.com/apps
14http://carconnectivity.org/
15http://carconnectivity.org/public/files/files/MirrorLink_2pgBrochure_0.pdf
16http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-

with-windows-in-the-car-concept-1240245
17http://developer.android.com/guide/topics/sensors/index.html
18http://developer.android.com/reference/android/hardware/SensorManager.html

19

https://developer.android.com/training/auto/index.html
http://www.mirrorlink.com/apps
http://carconnectivity.org/
http://carconnectivity.org/
http://carconnectivity.org/
http://carconnectivity.org/public/files/files/MirrorLink_2pgBrochure_0.pdf
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://developer.android.com/guide/topics/sensors/index.html
http://developer.android.com/reference/android/hardware/SensorManager.html
https://developer.android.com/training/auto/index.html
http://www.mirrorlink.com/apps
http://carconnectivity.org/
http://carconnectivity.org/public/files/files/MirrorLink_2pgBrochure_0.pdf
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://developer.android.com/guide/topics/sensors/index.html
http://developer.android.com/reference/android/hardware/SensorManager.html

Sensors19 can be queried by apps, or apps can register for notifications when646

sensor values change, including when the app is not in the foreground or when647

the device is asleep (if supported by the sensor). Apps can also register20 for no-648

tifications when sensor values satisfy some trigger, such as a ‘significant’ change.649

Automotive Message Broker650

Automotive Message Broker21 is an Intel OTC project to broker information651

from the vehicle networks to applications, exposing a tweaked version22 of the652

W3C Vehicle Information Access API (with a few types and naming conventions653

tweaked) over D-Bus to apps, and interfacing with whatever underlying networks654

are in use in the vehicle. In short, it has the same goals as the Apertis Sensors655

and Actuators API.656

As of August 2015, it was last modified in June 2015, so is an active project657

(although Tizen is in decline, so this may change). Although it is written in658

C++, it uses GNOME technologies like GObject Introspection; but it also uses659

Qt. Its main daemon is the Automotive Message Broker daemon, ambd.660

One area where it differs from the Apertis design is Security; it does not im-661

plement the polkit integration which is key to the vehicle device daemon secu-662

rity domain boundary. Modifying the security architecture of a large software663

project after its initial implementation is typically hard to get right.664

Another area where ambd differs from the Apertis design is in the backend:665

ambd uses multiple plugins to aggregate vehicle properties from many places.666

Apertis plans to use a single OEM-provided, vehicle-specific plugin.667

AllJoyn668

The AllJoyn Framework23 is an internet of things (IoT) framework produced669

under the Linux Foundation banner and the AllSeen Alliance24. (Note that670

IoT frameworks are explicitly out of scope for this design; this section is for671

background information only. See Bluetooth wrist watch and the Internet of672

Things) It allows devices to discover and communicate with each other. It is673

freely available (open source) and has components which run on various different674

operating systems.675

As a framework, it abstracts the differences between physical transports, provid-676

ing a session API for devices to use in one-to-one or one-to-many configurations677

19http://developer.android.com/reference/android/hardware/SensorManager.html#
registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,
%20int%29

20http://developer.android.com/reference/android/hardware/SensorManager.html#
requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.
Sensor%29

21https://github.com/otcshare/automotive-message-broker
22https://github.com/otcshare/automotive-message-broker/blob/master/docs/amb.in.fidl
23https://allseenalliance.org/framework
24https://allseenalliance.org/

20

http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29
https://github.com/otcshare/automotive-message-broker
https://github.com/otcshare/automotive-message-broker/blob/master/docs/amb.in.fidl
https://allseenalliance.org/framework
https://allseenalliance.org/
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29
https://github.com/otcshare/automotive-message-broker
https://github.com/otcshare/automotive-message-broker/blob/master/docs/amb.in.fidl
https://allseenalliance.org/framework
https://allseenalliance.org/

for communication. A lot of its code is orientated towards implementing differ-678

ent physical transports.679

It provides a security API for establishing different trust models between devices.680

It provides various communication layer APIs for implementing RPC or raw681

I/O streams (or other things in-between) between devices. However, it does not682

specify the protocols which devices must use — they are specified by the device683

manufacturer.684

AllJoyn provides common services for setting up new devices, sending notifica-685

tions between devices, and controlling devices. It provides one example service686

for controlling lamps in a house, where each lamp manufacturer implements687

a well-defined OEM API for their lamp, and each application uses the lamp688

service API which abstracts over these.689

Approach690

Based on the above research (Existing sensor systems) and Requirements, we691

recommend the following approach as an initial sketch of a Sensors and Actua-692

tors API.693

Overall architecture694

695

Vehicle device daemon696

Implement a vehicle device daemon which aggregates all sensor data in the vehi-697

cle, and multiplexes access to all actuators in the vehicle (apart from specialised698

high bandwidth devices; see High bandwidth or low latency sensors). It will699

connect to whichever underlying buses are used by the OEM to connect devices700

(for example, the CAN and LIN buses); see Hardware and app APIs. The im-701

plementation may be new, or may be a modified version of ambd, although it702

would need large amounts of rework to fit the Apertis design (see Automotive703

message broker).704

21

The daemon needs to receive and process input within the latency bounds of705

the sensors.706

The daemon should expose a D-Bus interface which follows the W3C Vehicle707

Information Access API25. The set of supported properties, out of those defined708

by the Vehicle Signal Specification26, may vary between vehicles — this is as ex-709

pected by the specification. It may vary over time as devices dynamically appear710

and disappear, which programs can monitor using the Availability interface27.711

The W3C specification was chosen rather than something like HomeKit due to712

its close match with the requirements, its automotive background, and the fact713

that it looks like an active and supported specification. Furthermore, HomeKit714

requires each device to define one or more protocols to use, allowing for arbitrary715

flexibility in how devices communicate with the controller. All the sensor and716

actuator use cases which are relevant to vehicles need only a property interface,717

however, which supports getting and setting properties, and being notified when718

they change.719

If an OEM, third party or application developer wishes to add new sensor or720

actuator types, they should follow the extension process28 and request that the721

extensions be standardised by Apertis — they will then be released in the next722

version of the Sensors and Actuators API, available for all applications to use. If723

a vehicle needs to be released with those sensors or actuators in the meantime,724

their properties must be added to the SDK API in an OEM-specific namespace.725

Applications from the OEM can use properties from this namespace until they726

are standardised in Apertis. See Property naming.727

Multiple vehicles can be supported by exposing new top-level instances of the728

Vehicle interface29. For example, each vehicle could be exposed as a new object729

in D-Bus, each implementing the Vehicle interface, with changes to the set of730

vehicles notified using an interface like the standard D-Bus ObjectManager30731

interface.732

This API can be exposed to application bundles in any binding language sup-733

ported by GObject Introspection (including JavaScript), through the use of a734

client library, just as with other Apertis services. The client library may pro-735

vide more specific interfaces than the D-Bus interface — the D-Bus API may736

be defined in terms of string keywords and variant values, whereas the client737

library API may be sensor-specific strongly typed interfaces.738

25http://www.w3.org/2014/automotive/vehicle_spec.html
26https://github.com/GENIVI/vehicle_signal_specification
27http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
28https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
29https://www.w3.org/Submission/vsso/#Vehicle
30http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-

objectmanager

22

http://www.w3.org/2014/automotive/vehicle_spec.html
http://www.w3.org/2014/automotive/vehicle_spec.html
http://www.w3.org/2014/automotive/vehicle_spec.html
https://github.com/GENIVI/vehicle_signal_specification
http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
https://www.w3.org/Submission/vsso/#Vehicle
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
http://www.w3.org/2014/automotive/vehicle_spec.html
https://github.com/GENIVI/vehicle_signal_specification
http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
https://www.w3.org/Submission/vsso/#Vehicle
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager

Hardware and app APIs739

The vehicle device daemon will have two APIs: the D-Bus SDK API exposed740

to applications, and the hardware API it consumes to provide access to the741

CAN and LIN buses (for example). The SDK API is specified by Apertis,742

and is standardised across all Apertis deployments in vehicles, so that a bundle743

written against it will work in all vehicles (subject to the availability of the744

devices whose properties it uses).745

Open question: The exact definition of the SDK API is yet to be finalised. It746

should include support for accessing multiple properties in a single IPC round747

trip, to reduce IPC overheads.748

The hardware API is also specified by Apertis, and implemented by one or more749

backend services which connect to the vehicle buses and devices and expose the750

information as properties understandable by the vehicle device daemon, using751

the hardware API.752

At least one backend service must be provided by the vehicle OEM, and it must753

expose properties from the vehicle’s standard devices from the vehicle buses.754

Other backend services may be provided by the vehicle OEM for other devices,755

such as optional devices for premium vehicle models; or truck installations.756

Similarly, backend services may be provided by third parties for other devices,757

such as after-market devices like roof boxes. Application bundles may provide758

backend services as well, to expose hardware via application-specific protocols.759

Consequently, backend services will likely be developed in isolation from each760

other.761

Each backend service must expose zero or more properties — it is possible for762

a backend to expose zero properties if the device it targets is not currently763

connected, for example.764

Each backend service must run as a separate process, communicating with the765

vehicle device daemon over D-Bus using the hardware API. The hardware API766

needs the following functionality:767

• Bulk enumeration of vehicles768

• Bulk notification of changes to vehicle availability769

• Bulk enumeration of properties of a vehicle, including readability and770

writability771

• Bulk notification of changes to property availability, readability or772

writability773

• Subscription to and unsubscription from property change notifications774

• Bulk property change notifications for subscribed properties775

The hardware API will be roughly a similar shape to the SDK API, and hence776

a lot of complexity of the vehicle device daemon will be in the vehicle-specific777

23

backends (both operate on properties — Properties vs devices).778

As vehicle networks differ, the backend used in a given vehicle has to be de-779

veloped by the OEM developing that vehicle. Apertis may be able to provide780

some common utility functions to help in implementing backends, but cannot781

abstract all the differences between vehicles. (See Background on intra-vehicle782

networks).783

It is expected that the main backend service for a vehicle, provided by that vehi-784

cle’s OEM, will be access the vehicle-specific network implementation running785

in the automotive domain, and hence will use the inter-domain communications786

connection31. In order to avoid additional unnecessary inter-process communi-787

cation (IPC) hops, it is suggested that the main backend service acts as the788

proxy for sensor data on the inter-domain connection, rather than communicat-789

ing with a separate proxy in the CE domain — but only if this is possible within790

the security requirements on inter-domain connection proxies.791

The path for a property to pass from a hardware sensor through to an application792

is long: from the hardware sensor, to the backend service, through the D-Bus793

daemon to the vehicle device daemon, then through the D-Bus daemon again794

to the application. This is at least 5 IPC hops, which could introduce non-795

negligible latency. See High bandwidth or low latency sensors for discussion796

about this.797

Interactions between backend services798

In order to keep the security model for the system simple, backend services must799

not be able to interact. Each device must be exposed by exactly one backend800

service — two backend services cannot expose the same device; and neither can801

they extend devices exposed by other backend services.802

The vehicle device daemon must aggregate the properties exposed by its back-803

ends and choose how to merge them. For example, if one backend service804

provides a ‘lights’ property as an array with one element, and another backend805

service does similarly, the vehicle device daemon should append the two and806

expose a ‘lights’ array with both elements in the SDK API.807

For other properties, the vehicle device daemon should combine scalar values.808

For example, if one backend service exposes a rain sensor measurement of 4/10,809

and another exposes a second measurement (from a separate sensor) of 6/10,810

the SDK API should expose an aggregated rain sensor measurement of (for811

example) 6/10 as the maximum of the two.812

Open question: The exact means for aggregating each property in the Vehicle813

Signal Specification is yet to be determined.814

Recommended hardware API design815

31https://sjoerd.pages.apertis.org/apertis-website/concepts/inter-domain-communication/

24

https://sjoerd.pages.apertis.org/apertis-website/concepts/inter-domain-communication/
https://sjoerd.pages.apertis.org/apertis-website/concepts/inter-domain-communication/
https://sjoerd.pages.apertis.org/apertis-website/concepts/inter-domain-communication/
https://sjoerd.pages.apertis.org/apertis-website/concepts/inter-domain-communication/

Below is a pseudo-code recommendation for the hardware API. It is not final,816

but indicates the current best suggestion for the API. It has two parts — a817

management API which is implemented by the vehicle device daemon; and a818

property API which is implemented by each backend service and queried by the819

vehicle device daemon.820

Types are given in the D-Bus type system notation32.821

Management API822

Exposed on the well-known name org.apertis.Rhosydd1 from the main daemon,823

the /org/apertis/Rhosydd1 object implements the standard org.freedesktop.DBus.ObjectManager33824

interface to let client discover and get notified about the registered vehicles.825

Vehicles are mapped under /org/apertis/Rhosydd1/${vehicle_id} and implement826

the org.apertis.Rhosydd1.Vehicle interface:827

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

interface org.apertis.Rhosydd1.Vehicle {

readonly property s VehicleId;

method GetAttributes (

in s node_path,

out x current_time,

out a(s(vdx)a{sv}(uu)) attributes)

method GetAttributesMetadata (

in s node_path,

out x current_time,

out a(sa{sv}(uu)) attributes_metadata)

method SetAttributes (

in a{sv} attributes_value)

method UpdateSubscriptions (

in a(sa{sv}) subscriptions,

in a(sa{sv}) unsubscriptions)

signal AttributesChanged (

x current_time,

a(s(vdx)a{sv}(uu)) changed_attributes,

a(sa{sv}(uu)) invalidated_attributes))

signal AttributesMetadataChanged (

x current_time,

a(sa{sv}(uu)) changed_attributes_metadata)

}

Backends register themselves on the bus with well-known names under the828

32http://dbus.freedesktop.org/doc/dbus-specification.html#type-system
33http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-

objectmanager

25

http://dbus.freedesktop.org/doc/dbus-specification.html#type-system
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
http://dbus.freedesktop.org/doc/dbus-specification.html#type-system
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager

org.apertis.Rhosydd1.Backends. prefix and implement the same interfaces and829

the main daemon, which will monitor the owned names on the bus and register830

to the object manager signals to multiplex access to the backends.831

Each attribute managed via the vehicle attribute API is identified by a prop-832

erty name. Properties names come from the Vehicle Signal Specification, for833

example:834

• Sunroof.Position34835

• Horn.IsActive35836

• Seat.FancySeatController.BackTemperature (oem specific property)837

Each attribute has three values associated:838

• its value (of type v)839

• its accuracy (as a standard deviation of type d, set to 0.0 for non-numeric840

values)841

• the timestamp when it was last updated (of type x)842

In addition the current time is also returned for comparison to the time the843

value was last updated.844

Values also have two set of metadata (of type u) associated:845

• availability enum846

– AVAILABLE = 1847

– NOT_SUPPORTED = 0848

– NOT_SUPPORTED_YET = 2849

– NOT_SUPPORTED_SECURITY_POLICY = 3850

– NOT_SUPPORTED_BUSINESS_POLICY = 4851

– NOT_SUPPORTED_OTHER = 5852

• access flags853

– NONE = 0854

– READABLE = (1 « 0)855

– WRITABLE = (1 « 1)856

The GetAttributes method must return the value of all properties in the given857

branch indicated by the node path. If the node path represents a leaf node, then858

only the value corresponding to that property is returned. If no such branch or859

property exists on that vehicle, it must return an error. To get all properties of860

the vehicle an empty node path shall be passed.861

To receive notification of attribute changes via the AttributesChanged and At-862

tributesMetadataChanged signals, clients must first register their subscription863

with the UpdateSubscriptions method to specify the kind of properties for which864

they have some interest.865

34https://www.w3.org/Submission/vsso/#SunroofPositionSensor
35https://www.w3.org/Submission/vsso/#HornIsActive

26

https://www.w3.org/Submission/vsso/#SunroofPositionSensor
https://www.w3.org/Submission/vsso/#HornIsActive
https://www.w3.org/Submission/vsso/#SunroofPositionSensor
https://www.w3.org/Submission/vsso/#HornIsActive

A backend service must emit an AttributesChanged signal when one of the866

properties it exposes changes, but it may wait to combine that signal with those867

from other changed properties — the trade-off between latency and notification868

frequency should be determined by backend service developers.869

Hardware API compliance testing870

As the vehicle-specific and third party backend services to the vehicle device871

daemon contain a large part of the implementation of this system, there should872

be a compliance test suite which all backend services must pass before being873

deployed in a vehicle.874

If a backend service is provided by an application bundle, that application bun-875

dle must additionally undergo more stringent app store validation, potentially876

including a requirement for security review of its code. See Checks for backend877

services.878

The compliance test suite must be automated, and should include a variety of879

tests to ensure that the hardware API is used correctly by the backend service.880

It should be implemented as a mock D-Bus service which mocks up the hardware881

management API (Recommended hardware API design), and which calls the882

hardware property API. The backend service must be run against this mock883

service, and call its methods as normal. The mock service should return each884

of the possible return values for each method, including:885

• Success.886

• Each failure code.887

• Timeouts.888

• Values which are out of range.889

It must call property API methods with various valid and invalid input.890

The backend service must not crash or obviously misbehave (such as consuming891

an unexpected amount of CPU time or memory).892

As the backend service pushes data to the vehicle device daemon, the compliance893

test could be trivially passed by a backend service which pushes zero properties894

to it. This must not be allowed: backend services must be run under a test895

harness which triggers all of their behaviour, for all of the devices they support.896

Whether this harness simulates traffic on an underlying intra-vehicle network,897

or physically provides inputs to a hardware sensor, is implementation defined.898

The behaviour must be consistently reproducible for multiple compliance test899

runs.900

SDK API compliance testing and simulation901

Application bundle developers will not be able to test their bundles on real902

vehicles easily, so a simulator should be made available as part of the SDK, which903

27

exposes a developer-configurable set of properties to the bundle under test. The904

simulator must support all properties and configurations supported by the real905

vehicle device daemon, including multiple vehicles and third-party accessories;906

otherwise bundles will likely never be tested in such configurations. Similarly,907

it must support varying properties over time, simulating dynamic addition and908

removal of vehicles and devices, and simulating errors in controlling actuators909

(for example, Automatic window feedback).910

The emulator should be implemented as a special backend service for the vehicle911

device daemon, which is provided by the emulator application. That way, it can912

directly feed simulated device properties into the daemon. This backend, and913

the emulator should only be available on the SDK, and must never be available914

on production systems.915

Compliance testing of application bundles is harder, but as a general principle,916

any of the Apertis store validation checks which can be brought forward so they917

can be run by the bundle developers, should be brought forward.918

SDK hardware919

If a developer has appropriate sensors or actuators attached to their development920

machine, the development version of the sensors and actuators system should921

have a separate backend service which exposes that hardware to applications922

for development and testing, just as if it were real hardware in a vehicle.923

This backend service must be separate from the emulator backend service (924

SDK API compliance testing and simulation), in order to allow them to be used925

independently.926

Trip logging of sensor data927

As well as an emulator for application developers to use when testing their928

applications, it would be useful to provide pre-recorded ‘trip logs’ of sensor929

data for typical driving trips which an application should be tested against.930

These trip logs should be replayable in order to test applications.931

The design for this is covered in the ‘Trip logging of SDK sensor data’ section932

of the Debug and Logging design.933

Properties vs devices934

A major design decision was whether to expose individual sensors to bundles935

via the SDK API, or to expose properties of the vehicle, which may correspond936

to the reading from a single sensor or to the aggregate of readings from multiple937

sensors. For example, if exposing sensors, the API would expose a gyroscope938

plus several accelerometers, each returning individual one-dimensional measure-939

ments. Bundles would have to process and aggregate this data themselves — in940

the majority of cases, that would lead to duplication of code (and most likely941

28

to bugs in applications where they mis-process the data), but it would also942

allow more advanced bundles access to the raw data to do interesting things943

with. Conversely, if exposing properties, the vehicle device daemon would pre-944

aggregate the data so that the properties exposed to bundles are filtered and945

averaged acceleration values in three dimensions and three angular dimensions.946

This would simplify implementation within bundles, at the cost of preventing a947

small class of interesting bundles from accessing the raw data they need.948

For the sake of keeping bundles simpler, and hence with potentially fewer bugs,949

this design exposes properties rather than sensors in the SDK API. This also950

means that the potentially latency sensitive aggregation code happens in the951

daemon, rather than in bundles which receive the data over D-Bus, which has952

variable latency.953

Similarly, the hardware API must expose properties as well, rather than indi-954

vidual devices. It may aggregate data where appropriate (for example, if it has955

information which is useful to the aggregation process which it cannot pass on956

to the vehicle device daemon). This also means that a set of device semantics,957

separate from the W3C Vehicle Data property semantics, does not have to be958

defined; nor a mapping between it and the properties.959

Property naming960

Properties exposed in the SDK API must be named following the Vehicle Signal961

Specification (VSS) naming guidelines36. VSS defines a ‘tree-like’ logical taxon-962

omy of the vehicle, (formally a Directed Acyclic Graph), where major vehicle963

structures (e.g. body, engine) are near the top of the tree and the logical assem-964

blies and components that comprise them, are defined as their child nodes. Each965

of the child nodes in the tree is further decomposed into its logical constituents,966

and the process is repeated until leaf nodes are reached. A leaf node is a node967

at the end of a branch that cannot be decomposed because it represents a single968

signal or data attribute value. For example some of the properties of DriveTrain969

transmission and fuel system are exposed with these names:970

• Drivetrain.Transmission.Speed37971

• Drivetrain.Transmission.TravelledDistance38972

• DriveTrain.FuelSystem.TankCapacity39973

The element hops from the root to the leaf is called path. Properties are named974

according to their path from the root of the tree toward the node itself and each975

element in the path is delimited by using the dot notation.976

36https://genivi.github.io/vehicle_signal_specification/rule_set/basics/#addressing-
nodes

37https://www.w3.org/Submission/vsso/#VehicleSpeed
38https://www.w3.org/Submission/vsso/#TravelledDistance
39https://www.w3.org/Submission/vsso/#tankCapacity

29

https://genivi.github.io/vehicle_signal_specification/rule_set/basics/#addressing-nodes
https://www.w3.org/Submission/vsso/#VehicleSpeed
https://www.w3.org/Submission/vsso/#TravelledDistance
https://www.w3.org/Submission/vsso/#tankCapacity
https://genivi.github.io/vehicle_signal_specification/rule_set/basics/#addressing-nodes
https://genivi.github.io/vehicle_signal_specification/rule_set/basics/#addressing-nodes
https://www.w3.org/Submission/vsso/#VehicleSpeed
https://www.w3.org/Submission/vsso/#TravelledDistance
https://www.w3.org/Submission/vsso/#tankCapacity

Property names are formed of components in the data tree (which may contain977

the letters a-z, A-Z, and the digits 0-9; they must start with a letter a-z or A-Z,978

and must be in CamelCase) separated by dots. Property names must start and979

end with a component (not a dot) and contain one or more components.980

If an OEM needs to expose a custom (non-standardised) property, they must981

define them underneath the private branch40 which is provided by VSS to facil-982

itate OEM specific properties.983

High bandwidth or low latency sensors984

Sensors which provide high bandwidth outputs, or whose outputs must reach the985

bundle within certain latency bounds (as opposed to simply being aggregated986

by the vehicle device daemon within certain latency bounds), will be handled987

out of band. Instead of exposing the sensor data via the vehicle device daemon,988

the address of some out of band communications channel will be exposed. For989

video devices, this might be a V4L device node; for audio devices it might be a990

PulseAudio device identifier. Multiplexing access to the device is then delegated991

to the out of band mechanism.992

This considerably relaxes the performance requirements on the vehicle device993

daemon, and allows the more specialist high bandwidth use cases to be handled994

by more specialised code designed for the purpose.995

Timestamps and uncertainty bounds996

The W3C Vehicle Signal Specification does not define uncertainty fields for997

any of its data types (for example, VehicleSpeed41 contains a single speed field998

measured in kilometres per hour). However, it allows the extensibility, so the999

data types exposed by the vehicle device daemon should all include an extension1000

field specifying the uncertainty (accuracy) of the measurement, in appropriate1001

units; and another specifying the timestamp when the measurement was taken,1002

in monotonic time (in the CLOCK_MONOTONIC42 sense).1003

For example, the Apertis VehicleSpeed update looks like this:1004

[('Drivetrain.Transmission.Speed', -> property name1005

(110, 0.3, 38003116), -1006

> value field (speed, uncertainty, timestamp)1007

{'description': 'Latereal vehicle accelaration', -> metadata1008

'id': 54,1009

'type': 'Int32',1010

'unit': 'km/h'})1011

]1012

40https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
41https://genivi.github.io/vehicle_signal_specification/rule_set/data_entry/sensor_

actuator/
42http://linux.die.net/man/3/clock_gettime

30

https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
https://genivi.github.io/vehicle_signal_specification/rule_set/data_entry/sensor_actuator/
http://linux.die.net/man/3/clock_gettime
https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
https://genivi.github.io/vehicle_signal_specification/rule_set/data_entry/sensor_actuator/
https://genivi.github.io/vehicle_signal_specification/rule_set/data_entry/sensor_actuator/
http://linux.die.net/man/3/clock_gettime

which represents a measurement of speed ± uncertainty (110 ± 0.3) kilometres1013

per hour.1014

Registering triggers and actions1015

When subscribing to notifications for changes to a particular property using the1016

VehicleSignalInterface43 interface, a program is also subscribing to be woken up1017

when that property changes, even if the program is suspended or otherwise not1018

in the foreground.1019

Once woken up, the program can process the updated property value, and poten-1020

tially send a notification to the user. If the user interacts with this notification,1021

the program may be brought to the foreground. The program must not be au-1022

tomatically brought to the foreground without user interaction or it will steal1023

the user’s focus, which is distracting.1024

See the draft compositor security design1025

Alternatively, the program could process the updated property value in the1026

background without notifying the user.1027

The VehicleSignalInterface interface may be extended to support notifications1028

only when a property value is in a given range; a degenerate case of this, where1029

the upper and lower bounds of the range are equal, would support notifica-1030

tions for property values crossing a threshold. This would most likely be imple-1031

mented by adding optional min and max parameters to the VehicleSignalInter-1032

face.subscribe() method.1033

Bulk recording of sensor data1034

This is a slightly niche use case for the moment, and can be handled by an1035

application bundle running an agent process which is subscribed to the relevant1036

properties and records them itself. This is less efficient than having the vehicle1037

device daemon do it, as it means more processes waking up for changes in sensor1038

data, but avoids questions of data formats to use and how and when to send bulk1039

data between the vehicle device daemon and the application bundle’s agent.1040

If the implementation of this is moved into the vehicle device daemon, the1041

lifecycle of recorded data must be considered: how space is allocated for the1042

data’s storage, when and how the application bundle is woken to process the1043

data, and what happens when the allocated storage space is filled.1044

Security1045

The vehicle device daemon acts as a privilege boundary between all bundles1046

accessing devices, between the bundles and the devices, and between each back-1047

end service. Application bundles must request permissions to access sensor data1048

43http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-
subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone

31

http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone

in their manifest (see the Applications Design document), and must separately1049

request permissions to interact with actuators. The split is because being able1050

to control devices in the vehicle is more invasive than passively reading from1051

sensors — it is safety critical. A sensible security policy may be to further split1052

out the permissions in the manifest to require specific permissions for certain1053

types of sensors, such as cabin audio sensors or parking cameras, which have1054

the potential to be used for tracking the user. As adding more permissions1055

has a very low cost, the recommendation is to err on the side of finer-grained1056

permissions.1057

The manifest should additionally separate lists of device properties which the1058

bundle requires access to from device properties which it may access if they1059

exist. This will allow the Apertis store to hide bundles which require devices1060

not supported by the user’s vehicle.1061

From the permissions in the manifest, AppArmor and polkit rules restricting1062

the program’s access to the vehicle device daemon’s API can be generated on1063

installation of the bundle. See Security domains for rationale.1064

When interacting with the vehicle device daemon, a program is securely identi-1065

fied by its D-Bus connection credentials, which can be linked back to its man-1066

ifest — the vehicle device daemon can therefore check which permissions the1067

program’s bundle holds and accept or reject its access request as appropriate.1068

Therefore, the vehicle device daemon acts as ‘the underlying operating system’ in1069

controlling access, in the phrasing used by44 the W3C specification. It enforces1070

the security boundary between each bundle accessing devices, and between the1071

intra- and inter-vehicle networks. The vehicle device daemon forms a separate1072

security domain from any of the applications.1073

Each backend service is a separate security domain, meaning that the vehicle1074

device daemon is in a separate security domain from the intra-vehicle networks.1075

The daemon may rate-limit API requests from each program in order to prevent1076

one program monopolising the daemon’s process time and effectively causing a1077

denial of service to other bundles by making API calls at a high rate. This1078

could result from badly implemented programs which poll sensors rather than1079

subscribing to change notifications from them, for example; as well as malicious1080

bundles.1081

Due to its complexity, low level in the operating system, and safety critical-1082

ity, the vehicle device daemon requires careful implementation and auditing1083

by an experienced developer with knowledge of secure software development at1084

the operating system level and experience with relevant technologies (polkit,1085

AppArmor, D-Bus).1086

The threat model under consideration is that of a malicious or compromised1087

bundle which can execute any of the D-Bus SDK APIs exposed by the daemon,1088

with full manifest privileges for sensor access. A second threat model is that of1089

44http://www.w3.org/2014/automotive/vehicle_spec.html#security

32

http://www.w3.org/2014/automotive/vehicle_spec.html#security
http://www.w3.org/2014/automotive/vehicle_spec.html#security

a compromised backend service, which can execute any of the D-Bus hardware1090

APIs exposed by the daemon.1091

Security domains1092

There are various security technologies available in Apertis for use in restricting1093

access to sensors and actuators. See the Security Design for background on1094

them; especially §9, Protecting the driver assistance system from attacks. These1095

technologies can only be used on the boundaries between security domains. In1096

this design, each application bundle is a single security domain (encompassing1097

all programs in the bundle, including agents and helper programs); the vehicle1098

device daemon is another domain; and each of the backend services are in a1099

separate domain (including the vehicle networks they each use).1100

Application bundle and another application bundle or the rest of the1101

system1102

Separation of the security domains of different application bundles from each1103

other and from the rest of the system is covered in the Applications and Security1104

designs.1105

Application bundle and vehicle device daemon1106

The boundary between an application bundle and the vehicle device daemon is1107

the Sensors and Actuators SDK API, implemented by the daemon and exposed1108

over D-Bus. The bundle’s AppArmor profile will grant access to call any method1109

on this interface if and only if the bundle requests access to one or more devices1110

in its manifest. Note that AppArmor is not used to separate access to different1111

sensors or actuators — it is not fine-grained enough, and is limited to allowing1112

or denying access to the API as a whole.1113

A separate set of polkit45 rules for the bundle control which devices the bundle is1114

allowed to access; these rules are generated from the bundle’s manifest, looking1115

at the specific devices listed. Given a set of polkit actions defined by the vehicle1116

device daemon, these rules should permit those actions for the bundle.1117

For example, the daemon could define the polkit actions:1118

• org.apertis.vehicle_device_daemon.EnumerateVehicles: To list the avail-1119

able vehicles or subscribe to notifications of changes in the list.1120

• org.apertis.vehicle_device_daemon.EnumerateDevices: To list the avail-1121

able devices on a given vehicle (passed as the vehicle variable on the ac-1122

tion) or subscribe to notifications of changes in the list.1123

• org.apertis.vehicle_device_daemon.ReadProperty: To read a property,1124

i.e. access a sensor, or subscribe to notifications of changes to the property1125

45http://www.freedesktop.org/software/polkit/docs/master/polkit.8.html

33

http://www.freedesktop.org/software/polkit/docs/master/polkit.8.html
http://www.freedesktop.org/software/polkit/docs/master/polkit.8.html

value. The vehicle ID and property name are passed as the vehicle and1126

property variables on the action.1127

• org.apertis.vehicle_device_daemon.WriteProperty: To write a property,1128

i.e. operate an actuator. The vehicle ID, property name and new value1129

are passed as the vehicle, property and value variables on the action.1130

The default rules for all of these actions must be polkit.Result.NO.1131

If a bundle has access to any device, it is safe and necessary to grant it access to1132

enumerate all vehicles and devices (the Enumerate* actions above) — otherwise1133

the bundle cannot check for the presence of the devices it requires. Knowledge1134

of which devices are connected to the vehicle should not be especially sensitive1135

— it is expected that there will not be a sufficient variety of devices connected1136

to a single vehicle to allow fingerprinting of the vehicle from the device list, for1137

example.1138

An application bundle, org.example.AccelerateMyMirror, which requests1139

access to the vehicle.throttlePosition.value property (a sensor) and the vehi-1140

cle.mirror.mirrorPan property (an actuator) would therefore have the following1141

polkit rule generated in /etc/polkit-1/rules.d/20-org.example.AccelerateMyMirror.rules:1142

34

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

polkit.addRule (function (action, subject) {

if (subject.credentials != 'org.example.AccelerateMyMirror') {

/* This rule only applies to this bundle.

* Defer to other rules to handle other bundles. */

return polkit.Result.NOT_HANDLED;

}

if (action.id == 'org.apertis.vehicle_device_daemon.EnumerateVehicles' ||

action.id == 'org.apertis.vehicle_device_daemon.EnumerateDevices') {

/* Always allow these. */

return polkit.Result.YES;

}

if (action.id == 'org.apertis.vehicle_device_daemon.ReadProperty' &&

action.lookup ('property') == 'vehicle.throttlePosition.value') {

/* Allow access to this specific property. */

return polkit.Result.YES;

}

if (action.id == 'org.apertis.vehicle_device_daemon.WriteProperty' &&

action.lookup ('property') == 'vehicle.mirror.mirrorPan') {

/* Allow access to this specific property,

* with user authentication. */

return polkit.Result.AUTH_USER;

}

/* Deny all other accesses. */

return polkit.Result.NO;

});

In the rules, the subject is always the program in the bundle which is requesting1143

access to the device.1144

Open question: What is the exact security policy to implement regarding1145

separation of sensors and actuators? For example, bundle access to sensors1146

could always be permitted without prompting by returning polkit.Result.YES1147

for all sensor accesses; but actuator accesses could always be prompted to the1148

user by returning polkit.Result.AUTH_SELF. The choice here depends on the1149

desired user experience.1150

Vehicle device daemon and a backend service1151

The boundary between the vehicle device daemon and one of its backend services1152

is the Sensors and Actuators hardware API, implemented by the daemon and1153

35

exposed over D-Bus. The backend service’s AppArmor profile will grant access1154

to call any method on this interface. Note that AppArmor is not used to grant1155

or deny permissions to expose particular properties — it is not fine-grained1156

enough, and is limited to allowing or denying access to the API as a whole.1157

In order to limit the potential for a compromised backend service to escalate its1158

compromise into providing malicious sensor data for any sensor on the system,1159

each backend service must install a file which lists the Vehicle Data properties1160

it might possibly ever provide to the vehicle device daemon. The vehicle device1161

daemon must reject properties from a backend service which are not in this list.1162

The list must not be modifiable by the backend service after installation (i.e. it1163

must be read-only, readable by the vehicle device daemon).1164

Furthermore, if a backend service is found to be exploitable after being deployed,1165

it must be possible for the vehicle device daemon to disable it. This is expected1166

to typically happen with backend services provided by application bundles, as1167

opposed to those provided by OEMs or third parties (as these should go through1168

stricter review, and disabling them would have a much larger impact). The1169

vehicle device daemon must have a blacklist of backend services which it never1170

loads. It must check the credentials of D-Bus messages from backend services1171

against this blacklist.1172

Using GetConnectionCredentials, which returns an unforgeable1173

identifier for the peer: http://dbus.freedesktop.org/doc/dbus-1174

specification.html#bus-messages-get-connection-credentials1175

In order to support one (vulnerable) version of a backend service being black-1176

listed, but not the next (fixed) version, the blacklist must contain version num-1177

bers, which should be compared against the installed version number of the1178

backend service as listed in the system-wide application bundle manifest store.1179

Vehicle device daemon and the rest of the system1180

The vehicle device daemon itself must not be able to access any of the vehicle1181

buses or any networks. It must be run as a unique user, which owns the daemon’s1182

binary, with its DAC permissions set such that other users (except root) cannot1183

run it. It must not have access to any device files. See §9, Protecting the driver1184

assistance system from attacks, of the Security design for more details.1185

Backend service and another backend service or the rest of the system1186

1187

In order to guarantee it is the only program which can access a particular vehicle1188

bus or network, each backend service should run as a unique user. The service’s1189

binary must be owned by that user, with its DAC permissions set such that1190

other users (except root) cannot run it. Any device files which it uses for access1191

to the underlying vehicle networks must be owned by that user, with their DAC1192

permissions set such that other users cannot access them, and udev rules in place1193

36

http://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-get-connection-credentials
http://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-get-connection-credentials
http://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-get-connection-credentials

to prevent access by other users. If the backend needs access to a (local) network1194

interface to communicate with the vehicle network buses, that interface must1195

be put in a separate network namespace, and the CLONE_NEWNET flag used1196

when spawning the backend service to put it in that namespace. This prevents1197

the service from accessing other network interfaces; and prevents other processes1198

from accessing the buses. See §9, Protecting the driver assistance system from1199

attacks, of the Security design for more details.1200

SDK emulator1201

Typically, it should not be possible for one program to have access to both1202

the vehicle device daemon’s SDK API and its hardware API (this access is1203

controlled by AppArmor). However, the SDK emulator is a special case which1204

needs access to both — so either this must be possible as a special case, or the1205

SDK emulator must be split into a backend service process and a UI process,1206

which communicate via another D-Bus connection.1207

Apertis store validation1208

Application bundles which request permissions to access devices must undergo1209

additional checks before being put on the Apertis store. This is especially im-1210

portant for bundles which request access to actuators, as those bundles are then1211

potentially safety critical.1212

Checks for access to sensors1213

Suggested checks for bundles requesting read access to sensors:1214

• The bundle does not send privacy-sensitive data to services outside the1215

user’s control (for example, servers not operated by the user; see the User1216

Data Manifesto46), either via network transmission, logging to local stor-1217

age, or other means, without the user’s consent. Any data sent with the1218

user’s consent must only be sent to services which follow the User Data1219

Manifesto. For example (this list is not exhaustive):1220

– Tracking the vehicle’s movements.1221

– Monitoring the user’s conversations (audio recording).1222

• The bundle does not have access to uniquely identifiable information, such1223

as a vehicle identification number (VIN). Any exceptions to this would1224

need stricter review.1225

• The bundle clearly indicates when it is gathering privacy-sensitive data1226

from sensors. For example, a ‘recording’ light displayed in the UI when1227

listening using a microphone.1228

1.1229

46https://userdatamanifesto.org/

37

https://userdatamanifesto.org/
https://userdatamanifesto.org/
https://userdatamanifesto.org/
https://userdatamanifesto.org/

Checks for access to actuators1230

Suggested checks for bundles requesting write access to actuators:1231

• The bundle does not additionally have network access.1232

• Actuators are only operated while the vehicle is not driving. Any excep-1233

tions to this would need even stricter review.1234

• Manual code review of the entire bundle’s source code by a developer1235

with security experience. The entire source code must be made available1236

for review by the bundle developer, as it is all run in the same security1237

domain. For example (this list is not exhaustive):1238

– Looking for ways the bundle could potentially be exploited by an1239

attacker.1240

– Checking that the bundle cannot use the actuator inappropriately1241

during normal operation if it encounters unexpected circumstances.1242

(For example, checking that arithmetic bugs don’t exist which could1243

cause an actuator to be operated at a greater magnitude than in-1244

tended by the bundle developer.)1245

Open question: The specific set of Apertis store validation checks for bundles1246

which access devices is yet to be finalised.1247

Checks for backend services1248

Suggested checks for backend services for the vehicle device daemon, whether1249

they are provided by an OEM, a third party or as part of an application bundle:1250

• The backend service does not additionally have network access.1251

• The backend service does not have write access to any of the file system1252

except devices it needs, and the D-Bus socket.1253

• The backend service cannot access any more device nodes than it needs1254

to support its devices.1255

• Manual code review of the entire bundle’s source code by a developer1256

with security experience. The entire source code must be made available1257

for review by the bundle developer, as it is all run in the same security1258

domain. For example (this list is not exhaustive):1259

– Looking for ways the backend service could potentially be exploited1260

by an attacker.1261

– Checking that the backend service cannot use any of its actuator in-1262

appropriately during normal operation if it encounters unexpected1263

circumstances. (For example, checking that arithmetic bugs don’t1264

exist which could cause an actuator to be operated at a greater mag-1265

nitude than intended by the developer.)1266

38

• The backend service’s D-Bus service is only accessible by the vehicle device1267

daemon (as enforced by AppArmor).1268

• If other software is shipped in the same application bundle, it must be1269

considered to be part of the same security domain as the backend service,1270

and hence subject to the same validation checks.1271

• The backend service must pass the automated compliance test (Hardware1272

API compliance testing).1273

• The backend service must not expose any properties which are not sup-1274

ported by the version of the vehicle device daemon which it targets as its1275

minimum dependency (see Vehicle device daemon for information about1276

the extension process).1277

Suggested roadmap1278

Due to the large amount of work required to write a system like this from1279

scratch, it is worth exploring whether it can be developed in stages.1280

The most important parts to finalise early in development are the SDK and hard-1281

ware APIs, as these need to be made available to bundle developers and OEMs1282

to develop bundles and the backend services. There seems to be little scope for1283

finalising these APIs in stages, either (for example by releasing property access1284

APIs first, then adding vehicle and device enumeration), as that would result in1285

early bundles which are incompatible with multi-vehicle configurations.1286

Similarly, it does not seem to be possible to implement one of the APIs before1287

the other. Due to the fragmented nature of access to vehicle networks, the1288

backend needs to be written by the OEM, rather than relying on one written1289

by Apertis for early versions of the system.1290

Furthermore, the security implementation for the vehicle device daemon must1291

be part of the initial release, as it is safety critical.1292

One area where phased development is possible is in the set of properties itself1293

— initial versions of the daemon and backends could implement a small, core1294

set of the properties defined in the VSS Ontology (VSSo)47, and future versions1295

could expand that set of properties as time is available to implement them. As1296

each property is a public API, it must be supported as part of the SDK one it1297

has appeared in a released version of the daemon, so it is important to design1298

the APIs correctly the first time.1299

Similarly, the scope for backend services could be expanded over time. Initial1300

releases of the system could allow only backend services written by vehicle OEMs1301

to be used; with later releases allowing third-party backend services, then ones1302

provided by installed application bundles.1303

47https://www.w3.org/Submission/vsso/

39

https://www.w3.org/Submission/vsso/
https://www.w3.org/Submission/vsso/

The emulator backend service (SDK API compliance testing and simulation)1304

and any SDK hardware backend services (SDK hardware) should be imple-1305

mented early on in development, as they should be relatively simple, and hav-1306

ing them allows application developers to start writing applications against the1307

service.1308

Requirements1309

• Enumeration of devices: The availability of known properties of the vehicle1310

can be checked through the Availability interface48. The W3C approach1311

considers properties, rather than devices, to be the enumerable items, but1312

they are mostly equivalent (see Properties vs devices).1313

• Enumeration of vehicles: The availability of objects implementing the1314

W3C Vehicle interface on D-Bus is exposed using an interface like the1315

D-Bus ObjectManager API.1316

• Retrieving data from sensors: Properties can be retrieved through the1317

VehicleInterface interface49. For high bandwidth sensors, or those with1318

latency requirements for the end-to-end connection between sensor and1319

bundle, data is transferred out of band (see High bandwidth or low latency1320

sensors).1321

• Sending data to actuators: Properties can be set through the VehicleSig-1322

nalInterface50 interface. As with getting properties, data for high band-1323

width or low latency sensors is transferred out of band.1324

• Network independence: The vehicle device daemon abstracts access to the1325

underlying buses, so bundles are unaware of it.1326

• Bounded latency of processing sensor data: The vehicle device daemon1327

should have its scheduling configuration set so that it can provide latency1328

guarantees for the underlying buses.1329

• Extensibility for OEMs: Extensions are standardised through Apertis and1330

released in the next version of the Sensors and Actuators API for use by1331

the OEM.1332

• Third-party backends: Backend services for the vehicle device daemon1333

can be installed as part of application bundles (either built-in or store1334

bundles).1335

• Third-party backend validation: Backend services must be validated be-1336

fore being installed as bundles (see Checks for backend services).1337

48http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
49https://www.w3.org/Submission/vsso/#Vehicle
50http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-

subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone

40

http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
https://www.w3.org/Submission/vsso/#Vehicle
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
https://www.w3.org/Submission/vsso/#Vehicle
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone

• Notifications of changes to sensor data: Property changes are notified1338

via a publish–subscribe interface on VehicleSignalInterface51. Notification1339

thresholds are supported by optional parameters on that interface.1340

• Uncertainty bounds: The W3C API is extended to include uncertainty1341

bounds for measurements.1342

• Failure feedback: Through its use of Promises52, the API allows for failure1343

to set a property.1344

• Timestamping: The W3C API is extended to include timestamps for mea-1345

surements.1346

• Triggering bundle activation: Programs are woken by subscriptions to1347

property changes (see Registering triggers and actions).1348

• Bulk recording of sensor data: Not currently implemented, but may1349

be implemented in future as a straightforward extension to the API. See1350

Bulk recording of sensor data.1351

• Sensor security: Access to the Sensors and Actuators API is controlled by1352

an AppArmor profile generated from permissions in the manifest. Access1353

to individual sensors is controlled by a polkit rule generated from the same1354

permissions. See Security.1355

• Actuator security: As with Sensor security; sensors and actuators are1356

listed and controlled by the polkit profile separately.1357

• App-store knowledge of device requirements: As devices required by an1358

application bundle are listed in the bundle’s manifest (see Security), the1359

Apertis store knows whether the bundle is supported by the user’s vehicle.1360

• Accessing devices on multiple vehicles: Each vehicle is exposed as a sepa-1361

rate D-Bus object, each implementing the W3C Vehicle interface.1362

• Third-party accessories: Properties for third-party accessories must be1363

standardised through Apertis and exposed as separate interfaces on the1364

vehicle object on D-Bus.1365

• SDK hardware support: SDK hardware should be supported through a1366

separate development-only backend service written specifically for that1367

hardware.1368

Open questions1369

1. Hardware and app APIs: The exact definition of the SDK API is yet to1370

be finalised. It should include support for accessing multiple properties in1371

a single IPC round trip, to reduce IPC overheads.1372

51http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-
subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone

52http://www.w3.org/TR/2013/WD-dom-20131107/#promises

41

http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/TR/2013/WD-dom-20131107/#promises
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/TR/2013/WD-dom-20131107/#promises

2. Interactions between backend services: The exact means for aggregating1373

each property in the Vehicle Data specification is yet to be determined.1374

3. Security domains: What is the exact security policy to implement re-1375

garding separation of sensors and actuators? For example, bundle access1376

to sensors could always be permitted without prompting by returning1377

polkit.Result.YES for all sensor accesses; but actuator accesses could al-1378

ways be prompted to the user by returning polkit.Result.AUTH_SELF.1379

The choice here depends on the desired user experience.1380

4. Apertis store validation: The specific set of Apertis store validation checks1381

for bundles which access devices is yet to be finalised.1382

Summary of recommendations1383

As discussed in the above sections, we recommend:1384

• Implementing a vehicle device daemon which exposes the W3C Vehicle1385

Information Access API; this will probably need to be developed from1386

scratch.1387

• Documenting the hardware API and distributing it to OEMs, third parties1388

and application developers along with a compliance test suite and a com-1389

mon utility library to allow them to build backend services for accessing1390

vehicle networks.1391

• Documenting the SDK API and distributing it to application bundle de-1392

velopers along with a validation suite and simulator to allow them to build1393

programs which use the API.1394

• Provide example trip logs for journeys to test against and a method for1395

replaying them via the vehicle device daemon, so application developers1396

can test their applications.1397

• Defining how to aggregate multiple values of each property in the W3C1398

Vehicle Data API.1399

• Extending the W3C Vehicle Information Service Specification to expose1400

uncertainty and timestamp data for each property.1401

• Extending the W3C Vehicle Information Service Specification to expose1402

multiple vehicles and notify of changes using an interface like D-Bus Ob-1403

jectManager.1404

• Extending the W3C Vehicle Information Service Specification to support1405

a range of interest for property change notifications.1406

• Adding a property to the application bundle manifest listing which device1407

properties programs in the bundle may access if they exist.1408

• Adding a property to the application bundle manifest listing which device1409

properties programs in the bundle require access to.1410

42

• Extending the Apertis store validation process to include relevant checks1411

when application bundles request permissions to access sensors (privacy1412

sensitive) or actuators (safety critical). Or when application bundles re-1413

quest permissions to provide a vehicle device daemon backend service1414

(safety critical).1415

• Modifying the Apertis software installer to generate AppArmor rules to1416

allow D-Bus calls to the vehicle device daemon if device properties are1417

listed in the application bundle manifest.1418

• Modifying the Apertis software installer to generate polkit rules to grant1419

an application bundle access to specific devices listed in the application1420

bundle manifest.1421

• Implementing and auditing strict DAC and MAC protection on the vehicle1422

device daemon and each of its backend services, and identity checks on all1423

calls between them.1424

• Defining a feedback and standardisation process for OEMs to request new1425

properties or device types to be supported by the vehicle device daemon’s1426

API.1427

Sensors and Actuators API1428

This sections aims to compare the current status of the Vehicle device daemon1429

for the sensors and actuators SDK API (Rhosydd53) with the latest W3C spec-1430

ifications: the Vehicle Information Service Specification54 API and the Vehicle1431

Signal Specification55 data model.1432

It will also explain the required changes to align Rhosydd56 to the new W3C1433

specifications.1434

Rhosydd API Current State1435

The current Rhosydd API57 is stable and usable implementing the Vehicle Infor-1436

mation Service Specification58 and using the data model specified by the Vehicle1437

Signal Specification59.1438

Considerations to align Rhosydd to the new VISS API1439

1. The original Vehicle API and the Rhosydd API don’t exactly match 1:1 as1440

the latter has been adapted to follow the inter-process D-Bus constraints1441

53https://docs.apertis.org/rhosydd/index.html
54https://www.w3.org/TR/vehicle-information-service/
55https://github.com/GENIVI/vehicle_signal_specification
56https://docs.apertis.org/rhosydd/index.html
57https://docs.apertis.org/rhosydd/index.html
58https://www.w3.org/TR/vehicle-information-service/
59https://github.com/GENIVI/vehicle_signal_specification

43

https://docs.apertis.org/rhosydd/index.html
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://docs.apertis.org/rhosydd/index.html
https://docs.apertis.org/rhosydd/index.html
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://docs.apertis.org/rhosydd/index.html
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
https://docs.apertis.org/rhosydd/index.html
https://docs.apertis.org/rhosydd/index.html
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification

and best-practice, which are somewhat different than the ones for a in-1442

process JavaScript API.1443

New vs Old Specification1444

1. The Vehicle Data Specification60 data model uses attributes (data) and1445

interface objects, where VISS uses the Vehicle Signal Specification61 data1446

model which is based on a signal tree structure containing different entities1447

types (branches, rbranches, signals, attributes, and elements).1448

2. The Vehicle Information Service Specification62 API objects are defined as1449

JSON objects that will be passed between the client and the VIS Server,1450

where Rhosydd is currently based on accessing attributes values using1451

interface objects.1452

3. VISS defines a set of Request Objects and Response Objects (de-1453

fined as JSON schemas), where the client must pass request messages to1454

the server and they should be any of the defined request objects, in the1455

same way, the message returned by the server must be one of the defined1456

response objects.1457

4. The request and response parameters contain a number of attributes,1458

among them the Action attribute which specify the type of action re-1459

quested by the client or delivered by the server.1460

5. VISS lists well defined actions for client requests: authorize, getMetadata,1461

get, set, subscribe, subscription, unsubscribe, unsubscribeAll.1462

6. The Vehicle Signal Specification63 introduces the concept of signals. They1463

are just named entities with a producer (or publisher) that can change its1464

value over time and have a type and optionally a unit type defined.1465

7. The Vehicle Signal Specification64 data model introduces a signal specifica-1466

tion format. This specification is a YAML list in a single file called vspec1467

file. This file can also be generated in other formats (JSON, FrancaIDL),1468

and basically defines the signal and data structure tree.1469

8. The Vehicle Signal Specification introduces the concept of signal ID1470

databases. These are generated from the vspec files, and they basically1471

map signal names to ID’s that can be used for easy indexing of signals1472

without the need of providing the entire qualified signal name.1473

60http://www.w3.org/2014/automotive/data_spec.html
61https://github.com/GENIVI/vehicle_signal_specification
62https://www.w3.org/TR/vehicle-information-service/
63https://github.com/GENIVI/vehicle_signal_specification
64https://github.com/GENIVI/vehicle_signal_specification

44

http://www.w3.org/2014/automotive/data_spec.html
https://github.com/GENIVI/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
http://www.w3.org/2014/automotive/data_spec.html
https://github.com/GENIVI/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification

Rhosydd New Changes1474

• The Vehicle Information Service Specification65 API defines the Request1475

and Response Objects using a JSON schema format. The Rhosydd API661476

(both the application-facing and backend-facing ones) has been updated1477

to provide a similar API based on idiomatic DBus methods and types.1478

• Maps the different VISS Server actions to handle client requests to their1479

respective DBus methods in Rhosydd.1480

• The internal Rhosydd data model has been updated to support all the1481

element types defined in the Vehicle Signal Specification67.1482

• It might also be required to add support to process signal ID databases1483

in order for Rhosydd to recognize signals specified by the Vehicle Signal1484

Specification.1485

Advantages1486

• The new VISS spec is based on a WebSocket API, and it resembles more1487

closely the inter-process mechanism based on D-Bus in Rhosydd rather1488

than the previous JavaScript in-process mechanism defined by the previous1489

specification.1490

Conclusion1491

The main effort will be about updating the internal Rhosydd data model to1492

reflect the changes introduced in the Vehicle Signal Specification68 data model,1493

with the extended types and metadata.1494

The DBus APIs, both on the application and backend sides, will need to be1495

updated to map to the new data model. From a high-level point of view the1496

old and new APIs are relatively similar, but a non-trivial amount of changes is1497

expected to map the new concepts and to align to the new terminology.1498

The Rhosydd69 client APIs for applications (librhosydd) and backends (libcroe-1499

sor) will need to be updated to reflect the changes in the underlying DBus1500

APIs.1501

Appendix: W3C API1502

For the purposes of completeness, the Vehicle Information Service Specifica-1503

tion70 is reproduced below. This is the version from the Final Business Group1504

65https://www.w3.org/TR/vehicle-information-service/
66https://docs.apertis.org/rhosydd/index.html
67https://github.com/GENIVI/vehicle_signal_specification
68https://github.com/GENIVI/vehicle_signal_specification
69https://docs.apertis.org/rhosydd/index.html
70https://www.w3.org/TR/vehicle-information-service/

45

https://www.w3.org/TR/vehicle-information-service/
https://docs.apertis.org/rhosydd/index.html
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://docs.apertis.org/rhosydd/index.html
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://docs.apertis.org/rhosydd/index.html
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://docs.apertis.org/rhosydd/index.html
https://www.w3.org/TR/vehicle-information-service/

Report 26 June 2018, and does not include the Vehicle Signal Specification71 for1505

brevity. The API is described as WebIDL72, and partial interfaces have been1506

merged.1507

71https://github.com/GENIVI/vehicle_signal_specification
72http://www.w3.org/TR/WebIDL/

46

https://github.com/GENIVI/vehicle_signal_specification
http://www.w3.org/TR/WebIDL/
https://github.com/GENIVI/vehicle_signal_specification
http://www.w3.org/TR/WebIDL/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

[Constructor,

Constructor(VISClientOptions options)]

interface VISClient {

readonly attribute DOMString? host;

readonly attribute DOMString? protocol;

readonly attribute unsigned short? port;

[NewObject] Promise< void> connect();

[NewObject] Promise< unsigned long> authorize(object tokens);

[NewObject] Promise< Metadata> getMetadata(DOMString path);

[NewObject] Promise< VISValue> get(DOMString path);

[NewObject] Promise< void> set(DOMString path, any value);

VISSubscription subscribe(DOMString path, SubscriptionCallback subscriptionCallback, ErrorCallback errorCallback,optional VISSubscribeFilters filters);

[NewObject] Promise< void> unsubscribe(VISSubscription subscription);

[NewObject] Promise< void> unsubscribeAll();

[NewObject] Promise< void> disconnect();

};

dictionary VISClientOptions {

DOMString? host;

DOMString? protocol;

unsigned short? port;

};

dictionary VISValue {

any value;

DOMTimeStamp timestamp;

};

dictionary VISError {

unsigned short number;

DOMString? reason;

DOMString? message;

DOMTimeStamp timestamp;

};

enum Availability {

"available",

"not_supported",

"not_supported_yet",

"not_supported_security_policy",

"not_supported_business_policy",

"not_supported_other"

};

47

48

	Sensors and actuators
	Introduction
	Terminology and concepts
	Vehicle
	Intra-vehicle network
	Inter-vehicle network
	Sensor
	Actuator
	Device

	Use cases
	Augmented reality parking
	Virtual mechanic
	Petrol station finder
	Sightseeing application bundle
	Changing bundle functionality when driving at speed
	Changing audio volume with vehicle or cabin noise
	Night mode
	Weather feedback or traffic jam feedback
	Insurance bundle
	Driving setup bundle
	Odour detection
	Air conditioning control
	Agricultural vehicle
	Roof box
	Truck installations
	Compromised application bundle
	Ethernet intra-vehicle network
	Development against the SDK

	Non-use-cases
	Bluetooth wrist watch and the Internet of Things
	Car-to-car and car-to-infrastructure communications
	Buddied and vehicle fleet communications

	Requirements
	Enumeration of devices
	Enumeration of vehicles
	Retrieving data from sensors
	Sending data to actuators
	Network independence
	Bounded latency of processing sensor data
	Extensibility for OEMs
	Third-party backends
	Third-party backend validation
	Notifications of changes to sensor data
	Uncertainty bounds
	Failure feedback
	Timestamping
	Triggering bundle activation
	Bulk recording of sensor data
	Sensor security
	Actuator security
	App store knowledge of device requirements
	Accessing devices on multiple vehicles
	Third-party accessories
	SDK hardware support

	Background on intra-vehicle networks
	Existing sensor systems
	W3C Vehicle Information Service Specification (VISS)
	GENIVI Web API Vehicle
	Apple HomeKit
	Apple External Accessory API
	iOS CarPlay
	Android Auto
	MirrorLink
	Android Sensor API
	Automotive Message Broker
	AllJoyn

	Approach
	Overall architecture
	Vehicle device daemon
	Hardware and app APIs
	Hardware API compliance testing
	SDK API compliance testing and simulation
	SDK hardware
	Trip logging of sensor data
	Properties vs devices
	Property naming
	High bandwidth or low latency sensors
	Timestamps and uncertainty bounds
	Registering triggers and actions
	Bulk recording of sensor data
	Security
	Suggested roadmap
	Requirements

	Open questions
	Summary of recommendations

	Sensors and Actuators API
	Rhosydd API Current State
	Considerations to align Rhosydd to the new VISS API
	New vs Old Specification
	Rhosydd New Changes
	Advantages
	Conclusion
	Appendix: W3C API

