
Security

Contents1

Terminology . 32

Privilege . 33

Trust . 34

Integrity, confidentiality and availability 35

Security boundaries and threat model 46

Security between applications . 47

Communication between applications 58

Security between users . 69

Security between platform services 610

Security between the device and the network 711

Physical security . 712

Solutions adopted by popular platforms 713

Android . 814

Bada . 915

iOS . 1016

Mandatory Access Control . 1117

Linux Security Modules (LSM) 1118

Comparison . 1519

Performance impact . 1720

Conclusion . 1821

polkit (PolicyKit) . 2422

Motivation for polkit . 2423

polkit’s solution . 2624

Recommendation . 2725

Resource Usage Control . 2726

Imposing limits on I/O for block devices 2827

Network filtering . 2928

Protecting the driver assistance system from attacks 2929

Protecting devices whose usage is restricted 3030

Protecting the system from Internet threats 3031

Other sources of potential exploitation 3232

Secure Software Distribution . 3333

Secure Boot . 3334

Data encryption and removal . 3435

Data encryption . 3436

Data removal . 3537

Stack Protection . 3538

Confining applications in containers 3639

LXC Containment . 3640

The Flatpak framework . 3741

The IMA Linux Integrity Subsystem 3742

Conclusion regarding IMA and EVM 3843

Seccomp . 3944

The role of the app store process for security 4045

2

How does security affect developer usage of a device? 4146

Further discussion . 4247

This document discusses and details solutions for the security requirements of48

the Apertis system.49

Security boundaries and threat model describes the various aspects of the secu-50

rity model, and the threat model for each.51

Local attacks to obtain private data or damage the system, including those52

performed by malicious applications that get installed in the device somehow53

or through exploiting a vulnerable application are covered in Mandatory access54

control (MAC). It is also the main line of defense against malicious email attach-55

ments and web content, and for minimizing the damage that root is able to do56

are also mainly covered by the MAC infrastructure. This is the main security57

infrastructure of the system, and the depth of the discussion is proportional to58

its importance.59

Denial of Service attacks through abuse of system resources such as CPU and60

memory are covered by Resource usage control. Attacks coming in through61

the device’s network connections and possible strategies for firewall setup are62

covered in Network filtering63

Attacks to the driver assistance system coming from the infotainment system are64

handled by many of these security components, so it is discussed in a separate65

section: Protecting the driver assistance system from attacks. Internet threats66

are the main subject of 10, Protecting the system from internet threats.67

Secure software distribution discusses how to provide ways to make installing68

and upgrade software secure, by guaranteeing packages are unchanged, undam-69

aged and coming from a trusted repository.70

Secure boot for protecting the system against attacks done by having physical71

access to the device is discussed in Secure boot. Data encryption and removal,72

is concerned with features whose main focus is to protect the privacy of the73

user.74

Stack protection, discusses simple but effective techniques that can be used75

to harden applications and prevent exploitation of vulnerabilities. Confining76

applications in containers, discusses the pros and cons of using the lightweight77

Linux Containers infrastructure for a system like Apertis.78

The IMA Linux integrity subsystem, wraps up this document by discussing how79

the Integrity Measurement Architecture works and what features it brings to80

the table, and at what cost.81

3

Terminology82

Privilege83

A component that is able to access data that other components cannot is said84

to be privileged. If two components have different privileges – that is, at least85

one of them can do something that the other cannot – then there is said to be86

a privilege boundary between them.87

Trust88

A trusted component is a component that is technically able to violate the secu-89

rity model (i.e. it is relied on to enforce a privilege boundary), such that errors90

or malicious actions in that component could undermine the security model.91

The trusted computing base (TCB) is the set of trusted components. This92

is independent of its quality of implementation – it is a property of whether the93

component is relied on in practice, and not a property of whether the component94

is trustworthy, i.e. safe to rely on. For a system to be secure, it is necessary95

that all of its trusted components be trustworthy.96

One subtlety of Apertis’ app-centric design1 is that there is a privilege boundary97

between application bundles even within the context of one user. As a result, a98

multi-user design has two main layers in its security model: system-level security99

that protects users from each other, and user-level security that protects a user’s100

apps from each other. Where we need to distinguish between those layers, we101

will refer to the TCB for security between users or the TCB for security102

between app bundles respectively.103

Integrity, confidentiality and availability104

Many documents discussing security policies divide the desired security proper-105

ties into integrity, confidentiality and availability. The definitions used here are106

taken from the USA National Information Assurance Glossary.107

Committee on National Security Systems, CNSS Instruction No.108

4009 National Information Assurance (IA) Glossary, April 2010.109

http://www.ncsc.gov/publications/policy/docs/CNSSI_4009.pdf110

Integrity is the property that data has not been changed, destroyed, or lost in111

an unauthorized or accidental manner. For example, if a malicious application112

altered the user’s contact list, that would be an integrity failure.113

Confidentiality is the property that information is not disclosed to system114

entities (users, processes, devices) unless they have been authorized to access115

the information. For example, if a malicious application sent the user’s contact116

list to the Internet, that would be a confidentiality failure.117

1https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/

4

https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/
http://www.ncsc.gov/publications/policy/docs/CNSSI_4009.pdf
https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/

Availability is the property of being accessible and usable upon demand by118

an authorized entity. For example, if an application used so much CPU time,119

memory or disk space that the system became unusable (a denial of service120

attack), or if a security mechanism incorrectly denied access to an authorized121

entity, that would be an availability failure.122

Security boundaries and threat model123

This section discusses the security properties that we aim to provide.124

Security between applications125

The Apertis platform provides for installation of application bundles, which may126

come from the platform developer or third parties. These are described in the127

Applications design document.128

Our model is that there is a trust boundary between these application bun-129

dles, providing confidentiality, integrity and availability. In other words, an130

application bundle should not normally be able to read data stored by another131

application bundle, alter or delete data stored by the other application bundle,132

or interfere with the operation of the other application bundle. As a necessary133

prerequisite for those properties, processes from an application bundle must not134

be able to gain the effective privileges of processes or programs from another135

application bundle (privilege escalation).136

In addition to the application bundles, the Apertis platform (defined in the Ap-137

plications design document, and including libraries, system services, and any138

user-level services that are independent of application bundles) has higher priv-139

ilege than any particular application bundle. Similarly, an application bundle140

should not in general be able to read, alter or delete non-application data stored141

by the platform, except for where the application bundle has been granted per-142

mission to do so, such as a navigation application reading location data (a143

“least-privilege” approach); and the application bundle must not be able to gain144

the effective privileges of processes or programs from the platform.145

The threat model here is to assume that a user installs a malicious application,146

or an application that has a security flaw leading to an attacker being able to147

gain control over it. The attacker is presumed to be able to execute arbitrary148

code in the context of the application.149

Our requirement is that the damage that can be done by such applications is150

limited to: reading files that are non-sensitive (such as read-only OS resources)151

or are specifically shared between applications; editing or deleting files that152

are specifically shared between applications; reducing system performance, but153

to a sufficiently limited extent that the user is able to recover by terminating154

or uninstalling the malicious or flawed application; or taking actions that the155

application requires for its normal operation.156

5

Some files, particularly large media files such as music, might be specif-157

ically shared between applications; such files do not have any integrity,158

confidentiality or availability guarantees against a malicious or subverted159

application. This is a trade-off for usability, similar to Android’s Environ-160

ment.getExternalStorageDirectory().161

To apply this security model to new platform services, it is necessary for those162

platform services to have a coherent security model, which can be obtained by163

classifying any data stored by those platform services using questions similar to164

these:165

• Can it be read by all applications, applications with a specific privilege166

flag, specific applications (for example the application that created it), or167

by some combination of those?168

• Can it be written by all applications, applications with a specific privilege169

flag, specific applications, or some combination of those?170

It is also necessary to consider whether data stored by different users using the171

same application must be separated (see Security between users).172

For example, a platform service for downloads might have the policy that each173

application’s download history can be read by the matching application, or by174

applications with a “Manage Downloads” privilege (which might for instance be175

granted to a platform Settings application).176

As another example, a platform service for app-bundle installation might have177

a policy stating that the trusted “Application Installer” HMI is the only com-178

ponent permitted to install or remove app-bundles. Depending on the desired179

trade-off between privacy and flexibility, the policy might be that any appli-180

cation may read the list of installed app-bundles, that only trusted platform181

services may read the list of installed app-bundles, or that any application may182

obtain a subset of the list (bundles that are considered non-sensitive) but only183

trusted platform services may read the full list.184

A service can be considered to be secure if it implements its security policy as185

designed, and that security policy is appropriate to the platform’s requirements.186

Communication between applications187

In a system that supports capabilities such as data handover between applica-188

tions, it is likely that pairs of application bundles can communicate with each189

other, either mediated by platform services or directly. The Interface Discov-190

ery2 and Data Sharing3 designs on the Apertis wiki have more information on191

this topic.192

The mechanisms for communicating between application bundles, or between193

application bundle and the platform, are to be classified into public and non-194

2https://sjoerd.pages.apertis.org/apertis-website/concepts/interface_discovery/
3https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/

6

https://sjoerd.pages.apertis.org/apertis-website/concepts/interface_discovery/
https://sjoerd.pages.apertis.org/apertis-website/concepts/interface_discovery/
https://sjoerd.pages.apertis.org/apertis-website/concepts/interface_discovery/
https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/
https://sjoerd.pages.apertis.org/apertis-website/concepts/interface_discovery/
https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/

public interfaces. Application bundles may enumerate all of the providers of195

public interfaces and may communicate with those providers, but it is not accept-196

able for application bundles to enumerate or communicate with the providers197

of non-public interfaces. The platform is considered to be trusted, and may198

communicate with any public or non-public interface.199

The security policy described here is one of many possible policies that can be200

implemented via the same mechanisms, and could be replaced or extended with201

a finer-grained security policy at a later date, for example one where applications202

can be granted the capability to communicate with some but not all non-public203

interfaces.204

Security between users205

The Apertis platform is potentially a multi-user environment; see the Multiuser206

design document for full details. This results in a two-level hierarchy: users are207

protected from each other, and within the context of a user, apps are protected208

from other apps.209

In at least some of the possible multi-user models described in the Multiuser210

design document, there is a trust boundary between users, again providing confi-211

dentiality, integrity and availability (see above). Once again, privilege escalation212

must be avoided.213

As with security between applications, some files (perhaps the same files that are214

shared between applications) might be specifically shared between users. Such215

files do not have any integrity, confidentiality or availability guarantees against216

a malicious user. Android’s Environment.getExternalStorageDirectory() is one217

example of a storage area shared by both applications and users.218

Security between platform services219

Within the platform, not all services and components require the same access220

to platform data.221

Some platform components, notably the Linux kernel, are sufficiently highly-222

privileged that it does not make sense to attempt to restrict them, because223

carrying out their normal functionality requires sufficiently broad access that224

they can violate one of the layers of the security model. As noted in Terminology,225

these components are said to be part of the trusted computing base for that layer;226

the number and size of these components should be minimized, to reduce the227

exposure of the system as a whole.228

The remaining platform components have considerations similar to those ap-229

plied to applications: they should have “least privilege”. Because platform com-230

ponents are part of the operating system image, they can be assumed not to be231

malicious; however, it is desirable to have “defence in depth” against design or232

implementation flaws that might allow an attacker to gain control of them. As233

such, the threat model for these components is that we assume an attacker gains234

7

control over the component (arbitrary code execution), and the desired property235

is that the integrity, confidentiality and availability impact is minimized, given236

the constraint that the component’s privileges must be sufficient for it to carry237

out its normal operation.238

Note that the concept of the trusted computing base applies to each of the two239

layers of the security policy. A system service that communicates with all users240

might be part of the TCB for isolation between users, but not part of the TCB241

for isolation between platform components or between applications. Conversely,242

a per-user service such as dconf might be part of the TCB for isolation between243

applications, but not part of the TCB for isolation between users. The Linux244

kernel is one example of a component that is part of the TCB for both layers.245

Security between the device and the network246

Apertis devices may be connected to the Internet, and should protect confiden-247

tiality and integrity of data stored on the Apertis device. The threat model248

here is that an attacker controls the network between the Apertis device and249

any Internet service of interest, and may eavesdrop on network traffic (passive250

attack) and/or substitute spoofed network traffic (active attack); we assume251

that the attacker does not initially control platform or application code running252

on the Apertis device. Our requirement is that normal operation of the Apertis253

device does not result in the attacker gaining the ability to read or change data254

on that device.255

Physical security256

An attack that could be considered is one where the attacker gains physical257

access to the Apertis system, for example by stealing the car in which it is258

installed. It is obviously impossible to guarantee availability in this particular259

threat model (the attacker could steal or destroy the Apertis system), but it is260

possible to provide confidentiality, via encryption “at rest”.261

A variation on this attack is to assume that the attacker has physical access262

to the system and then returns it to the user, perhaps repeatedly. This raises263

the question of whether integrity is provided (whether the user can be sure that264

they are not subsequently entering confidential data into an operating system265

that has been modified by the attacker).266

This type of physical security can come with a significant performance and267

complexity overhead; as a trade-off, it could be declared to be out-of-scope.268

Solutions adopted by popular platforms269

As background for the discussions of this document, the following sections pro-270

vide an overview of the approaches other mobile platforms have chosen for secu-271

rity, including an explanation of the trade-offs or assumptions where necessary.272

8

Android273

Android uses the Linux kernel, and as such relies on it being secure when it274

comes to the most basic security features of modern operating systems, such275

as process isolation and an access permissions model. On top of that, Android276

has a Java-based virtual machine environment which runs regular applications277

and provides them with APIs that have been designed specifically for Android.278

Regular applications can execute arbitrary native code within their application279

sandbox, for example by using the NDK interfaces.280

https://developer.android.com/training/articles/security-tips.281

html#Dalvik notes that “On Android, the Dalvik VM is not a282

security boundary”.283

However, some system functionality is not directly available within the appli-284

cation sandbox, but can be accessed by communicating with more-privileged285

components, typically using Android’s Java APIs.286

Early versions of Android worked under the assumption that the system will287

be used by a single user, and no attempt was made towards supporting any288

kind of multi-user use case. Based on this assumption, Android re-purposed the289

concept of UNIX user ID (uid), making each application run as a different user290

ID. This allows for very tight control over what files each application is able to291

access by simply using user-based permissions; this provides isolation between292

applications (Security between applications). In later Android versions, which293

do have multi-user support, user IDs are used to provide two separate security294

boundaries – isolating applications from each other, and isolating users from295

each other (Security between users) – with one user ID per (user, app) pair.296

This is discussed in more detail in the Multiuser design document4.297

The system’s main file system is mounted read-only to protect against unautho-298

rized tampering with system files (integrity for platform data, Security between299

platform services); however, this does not protect integrity against an attacker300

with physical access (Physical security). Encryption of the user data partition301

through the standard dm-crypt kernel facility (confidentiality despite physical302

access, Physical security) is supported if the user configures a password for their303

device. Users using gesture-based or other unlock mechanisms are unable to use304

this feature.305

The root user on Android is all-powerful, and can do anything to the system.306

Android makes no attempt to limit the power of processes running as UID 0 (the307

root user ID); in other words, they are part of the TCB. All security of system308

services, and the core system and applications rely on the separation of users309

already discussed and in assuming nothing other than the essential (the kernel310

itself and a very small number of system services) runs with root privileges.311

Older versions of Android did not use Mandatory Access Control, discussed in312

this document’s chapter 5. More recent versions use SELinux to augment the313

4https://sjoerd.pages.apertis.org/apertis-website/concepts/multiuser/

9

https://developer.android.com/training/articles/security-tips.html#Dalvik
https://developer.android.com/training/articles/security-tips.html#Dalvik
https://developer.android.com/training/articles/security-tips.html#Dalvik
https://sjoerd.pages.apertis.org/apertis-website/concepts/multiuser/
https://sjoerd.pages.apertis.org/apertis-website/concepts/multiuser/

uid-based sandbox.314

Security-Enhanced Linux in Android, https://source.android.com/315

devices/tech/security/selinux/316

The idea of restricting the services an application can use to those specified in317

the application’s manifest also exists in Android. Before installation, Android318

shows a list of system services the application intends to access and installation319

only initiates if the user agrees. This differs slightly from the Applications320

design in Apertis5, in which some permissions are subject to prompting similar321

to Android’s, while other permissions are checked by the app store curator and322

unconditionally granted on installation.323

Android provides APIs to verify a process has a given permission, but no central324

control is built into the API layer or the IPC mechanism as planned for Apertis325

– checking whether a caller has the required permissions to make that call is left326

to the service or application that provides the IPC interface or API, similar to327

how most GNOME services work by using PolicyKit6(see section 6 for more on328

this topic).329

See, for instance, how the A2DP service verifies the caller330

has the required permission: https://github.com/android/331

platform_frameworks_base/blob/master/core/java/android/332

server/BluetoothA2dpService.java#L257333

No effort is made specifically towards thwarting applications misbehaving and334

causing a Denial of Service on system services or the IPC mechanism. Android335

uses two very simple strategies to forcibly stop an application: 1) it kills appli-336

cations when the device is out of memory; 2) it notifies the user of unresponsive337

applications7 and allows them to force the application to close, similar to how338

GNOME does it.339

An application is deemed to not be responding after about 5 seconds of not being340

able to handle user input. This feature is implemented by the Android window341

manager service, which is responsible for dispatching events read from the ker-342

nel input events interface (the files under /dev/input) to the application, in343

cooperation with the activity manager service, which shows the application not344

responding dialog and kills the application if the user decides to close it. After345

dispatching an event, the window manager service waits for an acknowledgement346

from the application with a timeout; if the timeout is hit, then the application347

is considered not responding.348

Bada349

Bada is not an Open Source platform, so closer inspection of the inner work-350

ings is not feasible. However, the documentation indicates that Bada also kills351

5https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/
6http://live.gnome.org/PolicyKit
7http://developer.android.com/guide/practices/design/responsiveness.html

10

https://source.android.com/devices/tech/security/selinux/
https://source.android.com/devices/tech/security/selinux/
https://source.android.com/devices/tech/security/selinux/
https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/
https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/
https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/
http://live.gnome.org/PolicyKit
https://github.com/android/platform_frameworks_base/blob/master/core/java/android/server/BluetoothA2dpService.java#L257
https://github.com/android/platform_frameworks_base/blob/master/core/java/android/server/BluetoothA2dpService.java#L257
https://github.com/android/platform_frameworks_base/blob/master/core/java/android/server/BluetoothA2dpService.java#L257
https://github.com/android/platform_frameworks_base/blob/master/core/java/android/server/BluetoothA2dpService.java#L257
https://github.com/android/platform_frameworks_base/blob/master/core/java/android/server/BluetoothA2dpService.java#L257
http://developer.android.com/guide/practices/design/responsiveness.html
http://developer.android.com/guide/practices/design/responsiveness.html
http://developer.android.com/guide/practices/design/responsiveness.html
https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/
http://live.gnome.org/PolicyKit
http://developer.android.com/guide/practices/design/responsiveness.html

applications when under memory pressure.352

It also uses a simple API privilege level framework as the base of its security353

and reliability architecture. Applications running with the Normal API privilege354

level need to specify which API privilege groups8 it needs to be able to access355

in their manifest file.356

Some APIs are restricted under the System API level and can be used only357

by Samsung or its authorized partners. It’s not possible to say whether those358

restrictions are applied in a general way or by having the modules that provide359

the APIs perform validation checks, but the latter seems more likely given these360

are C++ APIs that do not go through any kind of central service.361

iOS362

iOS is, like Bada, a closed platform, so details are sometimes difficult to obtain9,363

but Apple does use some Open Source components (at the lower levels, in par-364

ticular). iOS has an application sandbox10 that is very similar in functionality365

to AppArmor, discussed bellow. The technology is based on Mandatory Access366

Control provided by the TrustedBSD11 project and has been marketed under367

the Seatbelt name.368

Like AppArmor, it uses configuration files that specify profiles, using path-based369

rules for file system access control. Also like AppArmor, other functionality such370

as network access can be controlled. The actual confinement is applied when the371

application uses system calls to request that the kernel carries out an action on372

the application’s behalf (in other words, when the privilege boundary between373

user-space and the kernel is crossed).374

Seatbelt is considered to be the single canonical solution to sandboxing applica-375

tions on iOS; this is in contrast with Linux, in which AppArmor is one option376

among many (system calls can be mediated by seccomp, the Secure Computing377

API12 described in section 17 of this document, in addition to up to one MAC378

layer such as AppArmor, SELinux or Smack).379

None of this complexity is exposed to apps developed for iOS, though; they are380

merely implementation details.381

Apparently, there are no central controls whatsoever protecting the system from382

applications that hang or try to DoS system services. The only real limitation383

imposed is the available system memory.384

Applications are free to use any APIs available, there are no explicit declarative385

permissions system like the one used in Android. However, some functionality386

8http://developer.bada.com/help/index.jsp?topic=/com.osp.documentation.help/html/
bada_overview/using_privileged_api.htm

9http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
10http://www.usefulsecurity.com/2007/11/apple-sandboxes-part-1/
11http://www.trustedbsd.org/mac.html
12http://lwn.net/Articles/475043/

11

http://developer.bada.com/help/index.jsp?topic=/com.osp.documentation.help/html/bada_overview/using_privileged_api.htm
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
http://www.usefulsecurity.com/2007/11/apple-sandboxes-part-1/
http://www.trustedbsd.org/mac.html
http://lwn.net/Articles/475043/
http://lwn.net/Articles/475043/
http://lwn.net/Articles/475043/
http://developer.bada.com/help/index.jsp?topic=/com.osp.documentation.help/html/bada_overview/using_privileged_api.htm
http://developer.bada.com/help/index.jsp?topic=/com.osp.documentation.help/html/bada_overview/using_privileged_api.htm
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
http://www.usefulsecurity.com/2007/11/apple-sandboxes-part-1/
http://www.trustedbsd.org/mac.html
http://lwn.net/Articles/475043/

are always mediated by the system, including through system-controlled UI.387

For instance, an application can query the GPS for location; when that happens,388

the system will take over and present the user with a request for permission.389

If the user accepts the request will be successful and the application will be390

white-listed for future queries. The same goes for interacting with the camera:391

the application can request a picture be taken, but the UI that is presented for392

taking the picture is controlled by the system as is actual interaction with the393

camera.394

This is analogous to the way in which Linux services can use PolicyKit to mediate395

privileged actions (see section 6), although on iOS the authorization step is396

specifically considered to be an implementation detail of the API used, whereas397

some Linux services do make the calling application aware of whether there was398

an interactive authorization step.399

Mandatory Access Control400

The goal of the Linux Discretionary Access Control (DAC) is a separation of401

multiple users and their data (Security between users, Security between plat-402

form services). The policies are based on the identity of a subject or their403

groups. Since in Apertis applications from the same user should not trust each404

other (Security between applications), the utilization of a Mandatory Access405

Control (MAC) system is recommended. MAC is implemented in Linux by one406

of the available Linux Security Modules (LSM).407

Linux Security Modules (LSM)408

Due to the different nature and objectives of various security models there is no409

real consensus about which security model is the best, thus support for loading410

different security models and solutions became available in Linux in 2001. This411

mechanism is called Linux Security Modules (LSM).412

Although it is in theory possible to provide generic support for any LSM, in413

practice most distributions pick one and stick to it, since both policies and414

threat models are very specific to any particular LSM module.415

The first implementation on top of LSM was SELinux developed by the US416

National Security Agency (NSA). In 2009 the TOMOYO Linux module was417

also included in the kernel followed by AppArmor in the same year. The sub-418

sections below gives a short introduction on the security models that are officially419

supported by the Linux Kernel.420

SELinux421

SELinux13 is one of the most well-known LSMs. It is supported by default422

in Red Hat Enterprise Linux and Fedora. It is infamous for how difficult it423

13http://selinuxproject.org/page/Main_Page

12

http://selinuxproject.org/page/Main_Page
http://selinuxproject.org/page/Main_Page

is to maintain the security policies; however, being the most flexible and not424

having any limitation regarding what it can label, it is the reference in terms of425

features. For every user or process, SELinux assigns a context which consists of426

a role, user name and domain/type. The circumstances under which the user is427

allowed to enter into a certain domain must be configured into the policies.428

SELinux works by applying rules defined by a policy when kernel-mediated429

actions are taken. Any file-like object in the system, including files, directories,430

and network sockets can be labeled. Those labels are set on file system objects431

using extended file system attributes. That can be problematic if the file system432

that is being used in a given product or situation lacks support for extended433

attributes. While support has been built for storing labels in frequently used434

networking file systems like NFS, usage in newer file systems may be challenging.435

Note that BTRFS does support extended attributes.436

Users and processes also have labels assigned to them. Labels can be of a more437

general kind like, for instance, the sysadm_t label, which is used to determine438

that a given resource should be accessible to system administrators, or of a more439

specific kind.440

Locking down a specific application, for instance, may involve creating new441

labels specifically for its own usage. A label “browser_cache_t” may be created,442

for instance, to protect the browser cache storage. Only applications and users443

which have their label assigned to them will be able to access and manage those444

files. The policy will specify that any files created by the browser on that specific445

directory are assigned that label automatically.446

Labels are automatically applied to any resources created by a process, based447

on the labels the process itself has, including sockets, files, devices represented448

as files and so on. SELinux, as other MAC systems, is not designed to impose449

performance-related limitations, such as specifying how much CPU time a pro-450

cess may consume, or how many times a process duplicates itself, but supports451

pretty much everything in the area it was designed to target.452

The SELinux support built into D-Bus allows enhancement of the existing D-453

Bus security rules by associating names, methods and signals with SELinux454

labels, thus bringing similar policy-making capabilities to D-Bus.455

TOMOYO Linux456

TOMOYO Linux14 focuses on the behavior of a system where every process is457

created with a certain purpose and allows each process to declare behaviors and458

resources needed to achieve their purposes. TOMOYO Linux is not officially459

supported by any popular Linux distribution.460

SMACK461

14http://tomoyo.sourceforge.jp/

13

http://tomoyo.sourceforge.jp/
http://tomoyo.sourceforge.jp/

Simplicity is the primary design goal of SMACK15. It was used by MeeGo before462

that project was cancelled; Tizen16 appears to be the only general-purpose Linux463

distribution using SMACK as of 2015.464

SMACK works by assigning labels to the same system objects and to processes as465

SELinux does; similar capabilities were proposed by Intel for D-Bus integration,466

but their originators did not follow up on reviews17, and the changes were not467

merged. SMACK also relies on extended file system attributes for the labels,468

which means it suffers from the same shortcomings that come from that as469

SELinux.470

There are a few special predefined labels, but the administrator can create and471

assign as many different labels as desired. The rules regarding what a process472

with a given label is able to perform on an object with another given label are473

specified in the system-wide policy file /etc/smack/accesses, or can be set in474

run-time using the smackfs virtual file system.475

MeeGo used SMACK by assigning a separate label to each service in the system,476

such as “Cellular” and “Location”. Every application would get their own labels477

and on installation the packaging system would read a manifest that listed the478

systems the application would require, and SMACK rules would then be created479

to allow those accesses.480

AppArmor481

Of all LSM modules that were reviewed, Application Armor (AppArmor18) can482

be seen as the most focused on application containment.483

AppArmor allows the system administrator to associate an executable with a484

given profile in order to limit access to resources. These resource limitations can485

be applied to network and file system access and other system objects. Unlike486

SMACK and SELinux, AppArmor does not use extended file system attributes487

for storing labels, making it file system agnostic.488

Also in contrast with SELinux and SMACK, AppArmor does not have a system-489

wide policy, but application profiles, associated with the application binaries.490

This makes it possible to disable enforcement for a single application, for in-491

stance. In the event of shipping a policy with an error that leads to users not492

being able to use an application it is possible to quickly restore functionality for493

that application without disabling the security for the system as a whole, while494

the incorrect profile is fixed.495

Since AppArmor uses the path of the binary for profile selection, changing the496

path through manipulation of the file system name space (i.e. through links497

or mount points) is a potential way of working-around the limits that are put498

15http://schaufler-ca.com/
16https://developer.tizen.org/sdk.html
17https://bugs.freedesktop.org/show_bug.cgi?id=47581
18https://gitlab.com/apparmor/apparmor/-/wikis/home

14

http://schaufler-ca.com/
https://developer.tizen.org/sdk.html
https://bugs.freedesktop.org/show_bug.cgi?id=47581
https://gitlab.com/apparmor/apparmor/-/wikis/home
http://schaufler-ca.com/
https://developer.tizen.org/sdk.html
https://bugs.freedesktop.org/show_bug.cgi?id=47581
https://gitlab.com/apparmor/apparmor/-/wikis/home

in place; while this is cited as a weakness, in practice it is not an issue, since499

restrictions exist to block anyone trying to do this. Creation of symbolic links500

is only allowed if the process doing so is allowed to access the original file, and501

links are followed to enforce any policy assigned to the binary they link to.502

Confined processes are also not allowed to mount file systems unless they are503

given explicit permission.504

Here’s an example of how restricting ping’s ability to create raw sockets cannot505

be worked around through linking – lines beginning with $ represent commands506

executed by a normal user, and those starting with # have been executed by507

the root user:508

1

2

3

4

5

6

7

8

9

10

11

12

13

$ ping debian.org

ping: icmp open socket: Operation not permitted

$ ln -s /bin/ping

$./ping debian.org

ping: icmp open socket: Operation not permitted

$ ln /bin/ping ping2

ln: failed to create hard link `ping2' => `/bin/ping': Operation not permitted

ping debian.org

ping: icmp open socket: Operation not permitted

ln -s /bin/ping /bin/ping2

ping2 debian.org

ping: icmp open socket: Operation not permitted

#

AppArmor restriction applying to file system links509

Copying the file would make it not trigger the containment. However, even if510

the user was able to symlink the binary or use mount points to work-around511

the path-based restrictions that should not mean privilege escalation, given the512

white-list approach that is being adopted. That approach means that any binary513

escaping its containment profile would in actuality be dropping privileges, not514

escalating them, since the restrictions imposed on binaries that do not have515

their own profile can be quite extensive.516

Note that Collabora is proposing mounting partitions that should only contain517

data with the option that disallows execution of code contained in them, so even518

if the user manages to escape the strict containment of the user session and519

copied a binary to one of the directories they have write access to, they would520

not be able to run it. Refer to the System updates & rollback and Application521

designs for more details on file system and partition configuration.522

Integration with D-Bus was developed by Canonical and shipped in Ubuntu for523

several years, before being merged upstream in dbus-daemon 1.9 and AppArmor524

2.9. The implementation includes patches to AppArmor’s user-space tools, to525

15

make the new D-Bus rules known to the profile parser, and to dbus-daemon, so526

that it will check with AppArmor before allowing a request.527

AppArmor will be used by shipping profiles for all components of the platform,528

and by requiring that third-party applications ship with their own profiles that529

specify exactly what requests the application should be allowed.530

Creating a new profile for AppArmor is a reasonably simple process: a new pro-531

file is generated automatically running the program under AppArmor’s profile532

generator, aa-genprof19, and exercising its features so that the profile generator533

can capture all of the accesses the application is expected to make. After the534

initial profile has been generated it must be reviewed and fine-tuned by manual535

editing to make sure the permissions that are granted are not beyond what is536

expected.537

In AppArmor there is no default profile applied to all processes, but a process538

always inherits limitations imposed to its parent. Setting up a proper profile539

for components such as the session manager is a practical and effective way of540

implementing this requirement.541

Comparison542

Since all those Linux Security Modules rely on the same kernel API and have543

the same overall goals, the features and resources they are able to protect are544

very similar, thus not much time will be spent covering those. The policy545

format and how control over the system and its components is exerted varies546

from framework to framework, though, which leads to different limitations. The547

table below has a summary of features, simplicity and limitations:548

SELinux AppArmor SMACK
Maintainability Complex Simple Simple
Profile creation Manual/Tools Manual/Tools Manual
D-Bus integration Yes Yes Not proposed upstream
File system agnostic No Yes No
Enforcement scope System-wide Per application System-wide

Comparison of LSM features549

Historically LSM modules have focused on kernel-mediated accesses, such as550

access to file system objects and network resources. Modern systems, though,551

have several important features being managed by user-space daemons. D-Bus is552

one such daemon and is specially important since it is the IPC mechanism used553

by those daemons and applications for communication. There is clear benefit554

in allowing D-Bus to cooperate with the LSM to restrict what applications can555

talk to which services and how.556

19https://gitlab.com/apparmor/apparmor/-/wikis/Profiling_with_tools

16

https://gitlab.com/apparmor/apparmor/-/wikis/Profiling_with_tools
https://gitlab.com/apparmor/apparmor/-/wikis/Profiling_with_tools

In that regard SELinux and AppArmor are in advantage since D-Bus is able to557

let these frameworks decide whether a given communication should be allowed558

or not, and whether a given process is allowed to acquire a particular name on559

the bus. Support for SMACK mediation was worked on by Intel for use in Tizen,560

but has not been proposed for upstream inclusion in D-Bus, and is believed to561

add considerable complexity to dbus-daemon. There is no work in progress to562

add TOMOYO support.563

Like D-Bus’ built-in support for applying “policy” to message delivery, AppAr-564

mor mediation of D-Bus messages has separate checks for whether the sender565

may send a message to the recipient, and whether the recipient may receive a566

message from the sender. Either or both of these can be used, and the mes-567

sage will only succeed if both sending and receiving were allowed. The sender’s568

AppArmor profile determines whether it can send (usually conditional on the569

profile name of the recipient), and the recipient’s AppArmor profile determines570

whether it can receive (either conditional on the profile name of the sender, or571

unconditionally), so some coordination between profiles is needed to express a572

particular high-level security policy.573

The main difference between the SELinux and SMACK label-based mediation in574

terms of features is how granular you can get. With the D-Bus additions to the575

AppArmor profile language20, for instance, in addition to specifying which ser-576

vices can be called upon by the constrained process it is also possible to specify577

which interfaces and paths are allowed or denied. This is unlike SELinux media-578

tion21, which only checks whether a given client can talk to a given service. One579

caveat regarding fine-grained (interface- and path-based) D-Bus access control580

is that it is often not directly useful, since the interface and path is not nec-581

essarily sufficient to determine whether an action should be allowed or denied582

(for example, Motivation for polkit describes why this is the case for the udisks583

service). As a result of considerations like this, the developers of kdbus oppose584

the addition of fine-grained access control within kdbus, and have indicated585

that kdbus’ access-control will never go beyond allowing or rejecting a client586

communicating with a service.587

kdbus is a kernel module that has been proposed to take over the role588

of the user-space dbus-daemon in D-Bus on Linux systems. https:589

//github.com/gregkh/kdbus590

Software that is being used by large distributions is often more tested and tested591

in more diverse scenarios. For this reason Collabora believes that being used by592

one of the main distributions is a very important feature to look for in a LSM.593

Flexibility is also good to have, since more complex requirements can be modeled594

more precisely. However, there is a trade-off between complexity and flexibility595

that should be taken into consideration.596

20https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#
dbus-rules

21http://dbus.freedesktop.org/doc/dbus-daemon.1.html#lbAg

17

https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#dbus-rules
https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#dbus-rules
https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#dbus-rules
http://dbus.freedesktop.org/doc/dbus-daemon.1.html#lbAg
http://dbus.freedesktop.org/doc/dbus-daemon.1.html#lbAg
http://dbus.freedesktop.org/doc/dbus-daemon.1.html#lbAg
https://github.com/gregkh/kdbus
https://github.com/gregkh/kdbus
https://github.com/gregkh/kdbus
https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#dbus-rules
https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#dbus-rules
http://dbus.freedesktop.org/doc/dbus-daemon.1.html#lbAg

The recommendation on the selection of the framework is a combination of the597

adoption of the framework by existing distributions, features, maintainability,598

cost of deployment and experience of the developers involved. The table below599

contains a comparison of the adoption of the existing security models. Only600

major distributions that ship and enable the module by default are listed.601

Name Distributions Merged to mainline Maintainer
SELinux Fedora, Red Hat Enterprise 08 Aug 2003 NSA, Network Associates, Secure Computing Corp., Trusted Computer Solutions, Tresys
AppArmor SUSE, OpenSUSE, Ubuntu 20 Oct 2010 SUSE, Canonical
SMACK Tizen 11 Aug 2007 Intel, Samsung2
TOMOYO 10 Jun 2009 NTT Data Corp.

Comparison of LSM adoption and maturity602

Performance impact603

The performance impact of MAC solutions depends heavily on the workload604

of the application, so it’s hard to rely upon a single metric. It seems major605

adopters of these technologies are not too concerned about their real-world606

impact, even though they may be expressive in benchmarks, since there are no607

recent measurements of performance impact for the major MAC solutions.608

That said, early tests indicate that SELinux has a performance impact floating609

around 7% to 10%22, with tasks that are more CPU intensive having less impact,610

since they are not making many system calls that are checked. SELinux performs611

checks on every operation that touches a labeled resource, so when reading or612

writing a file all read/write operations would cause a check. That means making613

larger operations instead of several smaller ones would also make the overhead614

go down.615

AppArmor generally does fewer checks than SELinux since only operations that616

open, map or execute a file are checked: the individual read/write operations617

that follow are not checked independently. Novell’s documentation and FAQs618

state a 0.2% overhead is expected on best-case scenarios – writing a big file, for619

instance, with a 2% overhead in worst-case scenarios (an application touching620

lots of files once). Collabora’s own testing on a 2012 x86-64 system puts the621

worst case scenario leaning towards the 5% range. The test measured reading622

3000 small files with a hot disk cache, and ranged from ~89ms to ~94ms average623

duration.624

SMACK’s performance characteristics should be similar to that of SELinux,625

given their similar approach to the problem. SMACK has been tested for a TV626

embedded scenario23 which has shown performance degradation from 0% all627

22http://blog.larsstrand.no/2007/11/rhel5-selinux-benchmark.html
23http://www.embeddedalley.com/pdfs/Smack_for_DigitalTV.pdf

18

http://blog.larsstrand.no/2007/11/rhel5-selinux-benchmark.html
http://blog.larsstrand.no/2007/11/rhel5-selinux-benchmark.html
http://blog.larsstrand.no/2007/11/rhel5-selinux-benchmark.html
http://www.embeddedalley.com/pdfs/Smack_for_DigitalTV.pdf
http://www.embeddedalley.com/pdfs/Smack_for_DigitalTV.pdf
http://www.embeddedalley.com/pdfs/Smack_for_DigitalTV.pdf
http://blog.larsstrand.no/2007/11/rhel5-selinux-benchmark.html
http://www.embeddedalley.com/pdfs/Smack_for_DigitalTV.pdf

the way to 30% on a worst-case scenario of deleting a 0-length file. Degradation628

varied greatly depending on the benchmark used.629

The only conclusion Collabora believes can be drawn from these numbers is630

that an approach which checks less often (as is the case for AppArmor) can631

be expected to have less impact on performance, in general. That said, these632

numbers should be taken with a grain of salt, since they haven’t been measured633

in the exact same hardware and with the exact same methodology. They may634

also suffer from bias caused by benchmark tests which may not represent real-635

world usage scenarios.636

No numbers exist measuring the impact on performance of the existing D-Bus637

SELinux and AppArmor mediation, nor with the in-development SMACK me-638

diation. The overhead caused to each D-Bus call should be similar to that of639

opening a file, since the same procedure is involved: a check needs to be done640

each time a message is received from a client that is contained. It should be641

noted that D-Bus is not designed to be used for high-frequency communica-642

tion due to its per-message overhead, so the additional overhead for AppArmor643

should not be problematic unless D-Bus is already being misused.644

Where higher-frequency communication is required, D-Bus’ file descriptor pass-645

ing feature can be used to negotiate a private channel (a pipe or socket) between646

two processes. This negotiation can be as simple as a single D-Bus method call,647

and only incurs the cost of AppArmor checks once (when it is first set up).648

Subsequent messages through the private channel bypass D-Bus and are not649

checked individually by AppArmor, avoiding any per-message overhead in this650

case.651

A more realistic and reliable assessment of the overhead imposed on a real-world652

system would only be feasible on the target hardware, with actual applications,653

where variables like storage device and file system would also be better con-654

trolled.655

Conclusion656

Collabora recommends the adoption of a MAC solution, specifically AppArmor.657

It solves the problem of restricting applications to the privileges they require to658

work, and is an effective solution to the problem of protecting applications from659

other applications running for the same user, which a DAC model is not able660

to provide.661

SMACK and TOMOYO have essentially no adoption and support when com-662

pared to solutions like SELinux and AppArmor, without providing any clear663

advantages. MeeGo would have been a good testing ground for SMACK, but664

the fact that it was never really deployed in enforcing mode means that the665

potential was never realized.666

SELinux offers the most flexible configuration of security policies, but it intro-667

duces a lot of complexity on the setup and maintenance of the policies, not only668

19

for distribution maintainers but also for application developers and packagers,669

which impacts on the costs of the solution. It is quite common to see Fedora670

users running into problems caused by SELinux configuration issues.671

AppArmor stands out as a good middle-ground between flexibility and main-672

tainability while at the same time having significant adoption: by the biggest673

end-user desktop distribution (Ubuntu) and by one of the two biggest enterprise674

distributors (SUSE). The fact that it is the security solution already supported675

and included in the Ubuntu distribution, which is the base of the Apertis plat-676

form, minimizes the initial effort to create a secure baseline and reduces the677

effort needed to maintain it. Since Ubuntu ships with AppArmor, some of the678

services and applications will already be covered by the profiles shipped with679

Ubuntu. Creation of additional profiles is made easy by the profile generator680

tool that comes with AppArmor. it records everything the application needs to681

do during normal operation, and allows for further refining after the recording682

session is done.683

Collabora will integrate and validate the existing Ubuntu profiles that are rele-684

vant to the Apertis platform as well as modify or write any additional profiles685

required by the base platform. Collabora will also assist in the creation of pro-686

files for higher level applications that ship with the final product and on the687

strategy for profile management for third party applications.688

AppArmor Policy and management examples689

Looking at a few examples might help better visualize how AppArmor works,690

and what creating new policies entices. Let’s look at a simple policy file:691

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

$ cat /etc/apparmor.d/bin.ping

...

/bin/ping {

#include <abstractions/base>

#include <abstractions/consoles>

#include <abstractions/nameservice>

capability net_raw,

capability setuid,

network inet raw,

/bin/ping mixr,

/etc/modules.conf r,

Site-specific additions and overrides. See local/README for details.

#include \<local/bin.ping\>

}

$

20

AppArmor policy shipped for ping in Ubuntu692

This is the policy for the ping command. The binary is specified, then a few693

includes that have common rules for the kind of binary ping (console), and ser-694

vices it consumes (nameservice). Then we have two rules specifying capabilities695

that the program is allowed to use, and we state the fact that it is allowed to696

do perform raw network operations. Then it’s specified that the process should697

be able to memory map (m) /bin/ping, inherit confinement from the parent (i),698

execute the binary /bin/ping (x) and read it (r). It’s also specified that ping699

should be able to read /etc/modules.conf.700

If an attack was able to execute arbitrary code by hijacking the ping process,701

then that is all it would be able to do. No reading of /etc/password would be702

allowed, for instance. If ping was a very core feature of the device and starts703

failing because of a bad policy, it is possible to disable security enforcement just704

for ping, leaving the rest of the system secured (something that would not be705

easily done with SMACK or SELinux), by running aa-disable with ping’s path706

as the parameter, or by installing a symbolic link in /etc/apparmor.d/disable:707

1

2

3

4

5

6

$ aa-disable /bin/ping

Disabling /bin/ping.

$ ls -l /etc/apparmor.d/disable/

total 0

lrwxrwxrwx 1 root root 24 Feb 20 19:38 bin.ping ->

/etc/apparmor.d/bin.ping

A symbolic link to disable the ping AppArmor policy708

Note that aa-disable is only a convenience tool to unload a profile and link it709

to the /etc/apparmor.d/disable directory. Note that the convenience script710

is not currently shipped in the image intended for the target hardware. It is711

available in the repository though, and is available in the development and SDK712

images since it makes it more convenient to test and debug issues.713

Note, also, that writing to the /etc/apparmor.d/disable directory is required714

for creating the symlink there, and the UNIX DAC permissions system already715

protects that directory for writing - only root is able to write to this directory.716

As discussed in A note about root, if an attacker becomes root the system is717

already compromised.718

Also, as discussed in the System update & rollback, the system partition will719

be mounted read-only, so that is an additional protection layer already. And in720

addition to that, the white-list approach discussed in Implementing a white list721

approach will already deny writing to anywhere in the file system, so anything722

running under the application manager will have an additional layer of security723

imposed on them.724

21

For these reasons, Collabora doesn’t see any reason to add additional security725

such as AppArmor profiles specifically for protecting the system against unau-726

thorized disabling of profiles.727

Profiles for libraries728

AppArmor profiles are always attached to a binary. That means there is no way729

to attach a profile to every program that uses a given library. However, devel-730

opers can write files called abstractions with rules that can be included through731

the #include directive, similar to how libraries work for programming. Using732

this feature Collabora has written rules for the WebKit library, for instance,733

that can be included by the browser application as well as by any application734

that uses the library.735

There is also concern with protecting internal, proprietary libraries, so that736

they cannot be used by applications. In the profiles and abstractions shipped737

with Apertis right now, all applications are allowed to use all libraries that are738

installed in the public library paths (such as /usr/lib).739

The rationale for this is libraries are only pieces of code that could be included740

by the applications themselves, and it would be very time-consuming and error741

prone having to specify each and every library and module the application may742

need to use directly or that would be used indirectly by a library used by the743

application.744

Collabora recommends that proprietary libraries that are used only by one or a745

few services should be installed in a private location, such as the application’s746

directory. That would put those libraries outside of the paths covered by the747

existing rules, and they would this be out of reach for any other application748

already, given the white-list approach to session lockdown, as discussed in Im-749

plementing a white list approach.750

If that is not possible, because the library hardcodes paths or some other issue,751

an explicit deny rule could be added to the chaiwala-base abstraction that752

implements the general rules that apply to most applications, including the one753

that allows access to all libraries. Collabora can help deciding what to do with754

specific libraries through support tickets opened in the bug tracking system.755

Chaiwala was a development codename for parts of the Apertis sys-756

tem. The name is retained here for compatibility reasons.757

Application installation and upgrades758

For installations and upgrades to be performed, no changes to the running sys-759

tem’s security are necessary, since the processes that manage upgrade, including760

the creation of the required snapshots will have enough power given to them761

An application’s profile is read at startup time. That means an application that762

has been upgraded will only be contained with the new rules after it has been763

22

restarted. The D-Bus integration works by querying the kernel interface for the764

PID it is communicating with, not its own, so D-Bus itself does not need to be765

restarted when new profiles are installed.766

When a .deb package is installed its AppArmor profile will be installed to the767

system AppArmor profile location (/etc/apparmor.d/), but in the new snapshot768

created for the upgrade rather than on the running system.769

The new version of the upgraded package and its new profile will only take effect770

after the system has been rebooted. For details about how .deb packages will771

be handled when the system is upgraded please see the System Updates and772

Rollback document.773

For more details on how applications from the store will be handled, the Appli-774

cations document produced by Collabora goes into details about how the per-775

missions specified in the manifest will be transformed into AppArmor profiles776

and on how they will be installed and loaded.777

A note about root778

As has been demonstrated in listing AppArmor restriction applying to file system779

links, AppArmor can restrict even the powers of the root user. Most platforms780

do not try to limit that power in any way, since if an attacker has breached the781

system to get root privileges it’s likely that all bets are already off. That said,782

it should be possible to limit the root user’s ability to modify the AppArmor783

profiles, leaving that task solely for the package manager (see the Applications784

design for details).785

Implementing a white-list approach786

Collabora recommends the use of a white-list approach in which the app-787

launcher will be confined to a policy that denies almost everything, and specific788

permissions will be granted by the application profiles. This means all applica-789

tions will only be able to access what is expressively allowed by their specific790

policies, providing Apertis with a very tight least-privilege implementation.791

A simple example of how that can be achieve using AppArmor is provided in the792

following examples. The examples will emulate the proposed solution by locking793

down a shell, which represents the Apertis application launcher, and granting794

specific privileges to a couple applications so that they are able to access the795

files they require.796

Listing Sample profiles for implementing white-listing shows a profile for the797

shell, essentially denying it access to everything by not allowing access to any798

files. It gives the shell permission to run both ls and cat. Note that flags rix799

are used for this, meaning the shell can read the binaries (r), and execute them800

(x); the i preceding the x tells AppArmor that these binaries should inherit the801

shell’s confinement rules, even if they have rules of their own.802

23

Then permission is given for the shell to run the dconf command. dconf is803

GNOME’s settings storage. Notice that we have p as the prefix for x this time.804

This means we want this application to use its own rules; if no rules had been805

specified, then AppArmor would have fallen back to using the shell’s confinement806

rules.807

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

$ cat /etc/apparmor.d/bin.zsh4

Last Modified: Fri May 11 11:43:44 2012

#include <tunables/global>

/bin/zsh4 {

#include <abstractions/base>

#include <abstractions/consoles>

#include <abstractions/nameservice>

/bin/ls rix,

/bin/cat rix,

/usr/bin/dconf rpx,

/bin/zsh4 mr,

/usr/lib/zsh/*/zsh/* mr,

}

$ cat /etc/apparmor.d/usr.bin.dconf

Last Modified: Fri May 11 11:59:09 2012

#include <tunables/global>

/usr/bin/dconf {

#include <abstractions/base>

#include <abstractions/nameservice>

@{HOME}/.cache/dconf/user rw,

@{HOME}/.config/dconf/user r,

/usr/bin/dconf mr,

}

Sample profiles for implementing white-listing808

The profile for dconf allows reading (and only reading) the user configuration809

for dconf itself, and allows reading and writing to the cache. By using these810

rules we have both guaranteed that no application executed from this shell will811

be able to look at or interfere with dconf’s files, and that dconf itself is able to812

function when used. Here’s the result:813

24

1

2

3

4

5

% cat .config/dconf/user

cat: .config/dconf/user: Permission denied

% dconf read /apps/empathy/ui/show-offline

true

%

Effects of white-list approach profiles814

As shown by this example, the application launcher itself and any applications815

which do not posses profiles can be restricted to the bare minimum permissions,816

and applications can be given the more specific privileges they require to do817

their job, using the p prefix to let AppArmor know that’s what is desired.818

polkit (PolicyKit)819

polkit (formerly PolicyKit) is a service used by various upstream components820

in Apertis, as a way to centralize security policy for actions delegated by one821

process to another. The central problems addressed by polkit are that the822

desired security policies for various privileged actions are system-dependent and823

non-trivial to evaluate, and that generic components such as the kernel’s DAC824

and MAC subsystems do not have enough context to understand whether a825

privileged action is acceptable.826

Motivation for polkit827

Broadly, there are two ways a process can carry out a desired action: it can828

do it directly, or it can use inter-process communication to ask a service to do829

that operation on its behalf. If the action is done directly, the components that830

say whether it can succeed are the Linux kernel’s normal discretionary access831

control (DAC) permissions checks, and if configured, a mandatory access control832

module (MAC, section 5).833

However, the kernel’s relatively coarse-grained checks are not sufficient to ex-834

press the desired policies for consumer-focused systems. A frequent example is835

mounting file systems on removable devices: if a user plugs in a USB stick with836

a FAT filesystem, it is reasonable to expect the user interface layer to either837

mount it automatically, or let the user choose to mount it. Similarly, to avoid838

data loss, the user should be able to unmount the removable device when they839

have finished with it.840

Applying the desired policy using the kernel’s permission checks is not possi-841

ble, because mounting and unmounting a USB stick is fundamentally the same842

system call as mounting and unmounting any other file system, which is not de-843

sired: if ordinary users can make arbitrary mount system calls, they can mount844

a file system that contains setuid executables and achieve privilege escalation.845

25

As a result, the kernel disallows direct mount and unmount actions by unpriv-846

ileged processes; instead, user processes may request that a privileged system847

process carries out the desired action. In the case of device mounting, Apertis848

uses the privileged udisks2 service to mount and unmount devices.849

In environments that use a MAC framework like AppArmor, actions that would850

normally be allowed can also become privileged: for instance, in a framework for851

sandboxed applications, most apps should not be allowed to record audio. The852

resulting AppArmor adjustments prevent carrying out these actions directly.853

The result is that, again, the only way to achieve them is that a service with a854

suitable privilege carries out the action (perhaps with a mandatory user interface855

prompt first, as in certain iOS features).856

These privileged requests are commonly sent via the D-Bus interprocess com-857

munication (IPC) system; indeed, this is one of the purposes for which D-Bus858

was designed. D-Bus has facilities for allowing or forbidding messages between859

particular processes in a somewhat fine-grained way, either directly or mediated860

by MAC frameworks. However, this has the same issue as the kernel’s checks for861

direct mount operations: the generic D-Bus IPC framework does not understand862

the context of the messages. For example, it can allow or forbid messages that863

ask to mount a device, but cannot discriminate based on whether the device in864

question is a removable device or a system partition, because it does not have865

that domain-specific information.866

This means that the security decision – having received this request, should the867

service obey it? – must be at least partly made by the service itself (for example868

udisks2), which does have the necessary domain-specific context to do so.869

The kdbus subsystem proposed for inclusion in the Linux kernel, which aims to870

supersede the user-space implementation of D-Bus, has an additional restriction:871

to minimize the amount of code in the TCB, it only parses the parts of a872

message that are necessary for normal message-routing. As a result, it does not873

discriminate between messages by their interface, member name or object-path,874

only by attributes of the source and destination processes. This is another875

reason why permissions checking for services such as disk-mounting must be876

done at least partly by the domain-specific service such as udisks2.877

The desired security policies for certain actions are also relatively complex. For878

example, udisks2 as deployed in a modern Linux desktop system such as Debian879

8 would normally allow mounting devices if and only if:880

• the requesting user is root, or881

• the requesting user is in group sudo, or882

• all of883

– the device is removable or external, and884

– the mount point is in /media, and885

26

– the mount options are reasonable, and886

– the device’s seat (in multi-seat computing) matches one of the seats887

at which the user is logged-in, and888

– either889

∗ the user is in group plugdev, or890

∗ all of891

· the user is logged-in locally, and892

· the user is logged-in on the foreground virtual console893

This is already complex, but it is merely a default, and is likely to be ad-894

justed further for special purposes (such as a single-user development laptop, a895

locked-down corporate desktop, or an embedded system like Apertis). It is not896

reasonable to embed these rules, or a sufficiently powerful parser to read them897

from configuration, into every system service that must impose such a policy.898

polkit’s solution899

polkit addresses this by dividing the authorization for actions into two phases.900

In the first phase, the domain-specific service (such as udisks2 for disk-901

mounting) interprets the request and classifies it into one of several actions902

which encapsulate the type of request. The principle is that the action903

combines the verb and the object for the desired operation: if a security policy904

would commonly produce different results when performing the same verb on905

different objects, then they are represented by different actions. For example,906

udisks2 divides the high-level operation “mount a disk” into the actions907

org.freedesktop.udisks2.filesystem-mount, org.freedesktop.udisks2.filesystem-908

mount-system, org.freedesktop.udisks2.filesystem-mount-other-seat and909

org.freedesktop.udisks2.filesystem-fstab depending on attributes of the disk. It910

also gathers information about the process making the request, such as the911

user ID and process ID. polkit clients do not currently record the LSM context912

(AppArmor profile, etc.) used by MAC frameworks, but could be enhanced to913

do so.914

In the second phase, the service sends a D-Bus request to polkit with the desired915

action, and the attributes of the process making the request. polkit processes916

this request according to its configuration, and returns whether the request917

should be obeyed.918

In addition to “yes” or “no”, polkit security policies can request that a user, or a919

user with administrative (root-equivalent) privileges, authenticates themselves920

interactively; if this is done, polkit will not respond to the request until the user921

has responded to the polkit agent, either by authenticating or by cancelling the922

operation.923

27

We recommend that this facility is not used with a password prompt in Apertis,924

since that user experience would be highly distracting. For operations that925

are deemed to be allowed or rejected by the platform designer, either the policy926

should return “yes” or “no” instead of requesting authorization, or the platform-927

provided polkit agent should return that result in response to authorization928

requests without any visible prompting. However, a prompt for authorization,929

without requiring authentication, might be a desired UX in some cases.930

Recommendation931

We recommend that Apertis should continue to provide polkit as a system ser-932

vice. If this is not done, many system components will need to be modified to933

refrain from carrying out the polkit check.934

If the desired security policy is merely that a subset of user-level components935

may carry out privileged actions via a given system service, and that all of936

those user-level components have equal access, we recommend that Apertis’937

polkit configuration should allow and forbid actions appropriately.938

If it is required that certain user-level components can communicate with a given939

system service with different access levels, we recommend enhancing polkit so940

that it can query AppArmor, giving the action as a parameter, before carrying941

out its own checks; this parallels what dbus-daemon currently does for SELinux942

and AppArmor.943

Alternative design: rely entirely on AppArmor checks944

The majority of services that communicate with polkit do so through the945

libpolkit-gobject library. This suggests an alternative design: the polkit service946

and its D-Bus API could be removed entirely, and the AppArmor check947

described above could be carried out in-process by each service, by providing948

a “drop-in” compatible replacement for libpolkit-gobject that performed an949

AppArmor query itself instead of querying polkit.950

We do not recommend this approach: it would be problematic for services such951

as systemd that do not use libpolkit-gobject, it would remove the ability for952

the policy to be influenced by facts that are not known to AppArmor (such953

as whether a user is logged-in and active), and it would be a large point of954

incompatibility with upstream software.955

Resource Usage Control956

Resource usage here refers to the limitation and prioritization of hardware re-957

sources usage. Common resources to limit usage of are CPU, memory, network,958

disk I/O and IPC.959

28

The proposed solution is Control Groups (cgroup-v124, cgroup-v225), which is960

a Linux kernel feature to limit, account, isolate and prioritize resource usage961

of process groups. It protects the platform from resource exhaustion and DoS962

attacks. The groups of processes can be dynamically created and modified. The963

groups are divided by certain criteria and each group inherits limits from its964

parent group.965

The interface to configure a new group is via a pseudo file system that contains966

directories to label the groups and each directory can have sub-directories (sub-967

groups). All those directories contain files that are used to set the parameters968

or provide information about the groups.969

By default, when the system is booted, the init system Collabora recommends970

for this project, systemd, will assign separate control groups to each of the sys-971

tem services. Collabora will further customize the cgroups of the base platform972

to clearly separate system services, built-in applications and third-party applica-973

tions. Support will be provided by Collabora for fine-tuning the cgroup profiles974

for the final product.975

Imposing limits on I/O for block devices976

The blkio subsystem is responsible for dealing with I/O operations concerning977

storage devices. It exports a number of controls that can be tuned by the978

cgroups subsystem. Those controls fall into one of two possible strategies: setting979

proportional weights for different cgroups or absolute upper bounds.980

The main advantage of using proportional weights is that the it allows the I/O981

bandwidth to be saturated – if nothing else is running, an application always982

gets all of the available I/O bandwidth. If, however, two or more processes in983

different cgroups are competing for access to the I/O bandwidth, then they will984

get a share that is proportional to the weights of their cgroups.985

For example, suppose a process A is on a cgroup with weight 10 (the minimum986

value possible) is working on mass-processing of photos, and process B is on a987

cgroup with weight 1000 (the maximum). If process A is the only one making988

I/O requests, it has the full available I/O bandwidth available for itself. As989

soon as process B starts doing its own I/O requests, however, it will get around990

99% of all the requests that get through, while process A will have only 1% for991

its requests.992

The second strategy is setting an absolute limit on the I/O bandwidth,993

often called throttling. This is done by writing how many bytes per994

second a cgroup should be able to transfer into a virtual file called995

blkio.throttle.read_bps_device, that lives inside the cgroup. This996

allows a great deal of control, but also means applications belonging to that997

24https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
25https://www.kernel.org/doc/Documentation/cgroup-v2.txt

29

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt

cgroup are not able to take advantage of the full I/O bandwidth even if they998

are the only ones running at a given point in time.999

Specifying a default weight to all applications, lower weights for mass-processing1000

jobs, and higher weights for time-critical applications is a good first step in not1001

only securing the system, but also improving the user experience. The hard-1002

limit of an upper bound on I/O operations can also serve as a way to make sure1003

no application monopolizes the system’s I/O.1004

As is usual for tunables such as these, more specific details on what settings1005

should be specified for which applications is something that needs to be devel-1006

oped in an empirical, iterative way, throughout the development of the platform,1007

and with actual target hardware. More details on the blkio subsystem support1008

for cgroups can be obtained from Linux documentation26.1009

Network filtering1010

Collabora recommends the use of the Netfilter framework to filter network traf-1011

fic. Netfilter provides a set of hooks inside the Linux kernel that allow kernel1012

modules to register callback functions with the network stack. A registered call-1013

back function is then called back for every packet that traverses the respective1014

hook within the network stack. Iptables is a generic table structure for the defi-1015

nition of rule sets. Each rule within an iptable consists of a number of classifiers1016

(iptables matches) and one connected action (iptables target).1017

Netfilter, when used with iptables, creates a powerful network packet filtering1018

system which can be used to apply policies to both IPv4 and IPv6 network1019

traffic. A base rule set that blocks all incoming connections will be added to the1020

platform by default, but port 80 access will be provided for devices connected1021

to the Apertis hotspot, so they can access the web server hosted on the system.1022

See the Connectivity document for more information on how this will work.1023

The best way to do that seems to be to add acceptance rules for the prede-1024

fined private network address space the DHCP server will use for clients of the1025

hotspot.1026

Collabora will offer support in refining the rules for the final product. Some1027

network interactions may be handled by means of an AppArmor profile instead.1028

Protecting the driver assistance system from attacks1029

All communication with the driver assistance system will be done through a1030

single service that can be talked to over D-Bus. This service will be the only1031

process allowed to communicate with the driver assistance system. This means1032

this service can belong to a separate user that will be the only one capable of1033

executing the binary, which is Collabora’s first recommendation.1034

26https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt

30

https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt

The daemon will use an IP connection to the driver assistance system, through1035

a simple serial connection. This means that the character device entry for1036

this serial connection shall be protected both by an udev27 rule that assigns1037

permissions for only this particular user. Access to the device entry should also1038

be denied by the AppArmor profile which covers all other applications, making1039

sure the daemon’s profile allows it.1040

Additionally, process namespace functionality can be used to make sure the1041

driver assistance network interface is only seen and usable by the daemon that1042

acts as gatekeeper. This is done by using a Linux-specific flag to the clone281043

system call, CLONE_NEWNET, which creates a new process with its network1044

namespace limited to viewing the loopback interface.1045

Having the process in its own cgroup also helps making it more robust, since1046

Linux tries to be fair among cgroups, so is a good idea in general. Systemd1047

already puts each service it starts in a separate cgroup, so making the daemon1048

a system service is enough to take advantage of that fairness.1049

The driver assistance communication daemon shall be started with this flag on,1050

and have the network interface for talking to the driver assistance system be1051

assigned to its namespace. When a network interface is assigned to a namespace1052

only processes in that namespace can see and interact with it. This approach1053

has the advantage of both protecting the interface from processes other than the1054

proxy daemon, and protecting the daemon from the other network interfaces.1055

Protecting devices whose usage is restricted1056

One or more cameras will be available for Apertis to control, but they should1057

not be accessed by any applications other than the ones required to implement1058

the driver assistance use cases. Cameras are made available as device files in1059

the /dev file system and can thus be controlled by both DAC permissions and1060

by making the default AppArmor policy deny access to it as well.1061

Protecting the system from Internet threats1062

The Internet is riddled with malicious or buggy code that present threats other1063

than those that come from direct attacks to the device’s IP connection. The1064

user of a system such as the Apertis may face attacks such as emails that link1065

to viruses, trojan horses and other kinds of malware, web sites that mislead the1066

user or that try to cause the system to misbehave or become unresponsive.1067

There is no single answer to such threats, but care should be exercised to make1068

each of the subsystems and applications involved in dealing with content from1069

the Internet robust to such malicious and buggy content. The solutions that1070

have been presented in the previous sections are essential for that.1071

27http://en.wikipedia.org/wiki/Udev
28https://man7.org/linux/man-pages/man2/clone.2.html

31

http://en.wikipedia.org/wiki/Udev
https://man7.org/linux/man-pages/man2/clone.2.html
http://en.wikipedia.org/wiki/Udev
https://man7.org/linux/man-pages/man2/clone.2.html

The first line of defence is, of course, a good firewall setup that disallows incom-1072

ing connections, protecting the IP interfaces of the device. The second line of1073

defence is making sure that the applications that deal with those threats are1074

well-written. Web browsers have also grown many techniques to protect the1075

user from both direct attacks such as denial of service or private information1076

disclosure and indirect forms of attack such as social engineering.1077

The basic rule of protecting the user from web content in a browser is essentially1078

assuming all content is untrusted. There are fewer APIs that allow a web1079

application to interact with local resources such as local files than there are1080

for native applications. The ones that do exist are usually made possible only1081

through express user interaction, such as when the user selects a file to upload.1082

Newer API that allows access to device capabilities such as the geolocation1083

facilities only work after the user has granted permission.1084

Browsers also try to make sure users are not fooled into believing they are in1085

a different site than the one they are really at, known as “phishing”, which1086

is one of the main social engineering attacks used on the web. The basic SSL1087

certificate checks, along with proper UI to warn the user about possible problems1088

can help prevent man-in-the-middle29 attacks. The HTTP library used by the1089

clutter port of WebKit is able to verify certificates using the system’s trusted1090

Certificate Authorities.1091

The ca-certificates package in Debian and Ubuntu carry those1092

In addition to those basic checks, WebKit includes a feature called XSS Auditor1093

which implements a number of rules and checks to prevent cross-site scripting301094

attacks, sometimes used to mix elements from both a fake and a legitimate site.1095

The web browser can be locked down, like any other application, to limit the1096

resources it can use up or get access to, and Collabora will be helping build an1097

AppArmor profile for it. This is what protects the system from the browser in1098

case it is exploited. By limiting the amount of damage the browser can do to1099

the system itself, any exploits are also hindered from reaching the rest of the1100

system.1101

It is also important that the UI of the browser behaves well in general. For1102

instance, user interfaces that make it easy to run executables downloaded from1103

the web make the system more vulnerable to attacks. A user interface that1104

makes it easier to distinguish the domain from the rest of the URI is sometimes311105

employed to help careful users be sure they are where they wanted to go.1106

Automatically loading pages that were loaded or loading when the browser had1107

to be terminated or crashed would make it hard for the user to regain control of1108

the browser too. Existing browsers usually load an alternate page with a button1109

29https://en.wikipedia.org/wiki/Man-in-the-middle_attack
30https://en.wikipedia.org/wiki/Cross-site_scripting
31https://chrome.googleblog.com/2010/10/understanding-omnibox-for-better.html

32

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Cross-site_scripting
https://chrome.googleblog.com/2010/10/understanding-omnibox-for-better.html
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Cross-site_scripting
https://chrome.googleblog.com/2010/10/understanding-omnibox-for-better.html

the user can click to load the page, which is probably also a good idea for the1110

Apertis browser.1111

Collabora evaluated taking the WebKit Clutter port to the new WebKit2 archi-1112

tecture as part of the Apertis project; as of 2012 it was deemed risky given the1113

time and budget constraints.1114

As of 2015, it has been decided that Apertis will switch away from WebKit1115

Clutter and onto the GTK+ port, which is already built upon the WebKit21116

architecture. The main feature of that architecture is that it has several dif-1117

ferent classes of processes: the UI process deals with user interaction, the Web1118

processes render page contents, the Network process mediates access to remote1119

data, and the Plugin processes are responsible for running plugins.1120

The fact that the processes are separate provides a great way of locking them1121

down properly. The Web processes, which are the most likely to be exploited in1122

case of successful attack are also the one that needs the least privileges when it1123

comes to interfacing with the system, so the AppArmor policies that apply to1124

it can be very strict. If a limited set of plugins is supported, the same can be1125

applied to the Plugin processes. In fact, the WebKit codebase contains support1126

for using seccomp filters (see Seccomp) to sandbox the WebKit2 processes. It1127

may be a useful addition in the future.1128

Other sources of potential exploitation1129

Historically, document viewers and image loaders have had vulnerabilities ex-1130

ploited in various ways to execute arbitrary code. PDF and spreadsheet files, for1131

instance, feature domain-specific scripting languages. These scripting facilities1132

are often sandboxed and limited in what they can do, but have been a source of1133

security issues nevertheless. Images do not usually feature scripting, but their1134

loaders have historically been the source of many security issues, caused by pro-1135

gramming errors, such as buffer overflows. These issues have been exploited to1136

cause denial of service or run arbitrary code.1137

Although these cases do deserve mention specifically for the inherent risk they1138

bring, there is no silver bullet for this problem. Keeping applications up-to-1139

date with security fixes, using hardening techniques such as stack protection,1140

discussed in Stack protection, and locking the application down to its minimum1141

access requirements are the tools that can be employed to reduce the risks.1142

Launching applications based on MIME type1143

It is common in the desktop world to allow launching an application through1144

the files that they are able to read. For instance, while reading email the user1145

may want to view an attachment; by “opening” the attachment an application1146

that is able to display that kind of file would be launched with the attachment1147

as an argument.1148

33

Collabora is recommending that all kinds of application launching always go1149

through the application manager. By doing that, there will be a centralized1150

way of controlling and limiting the launching of applications through MIME or1151

other types of content association, including being able to blacklist applications1152

with known security issues, for instance.1153

Secure Software Distribution1154

Secure software updates are a very important topic in the security of the plat-1155

form. Checking integrity and authenticity of the software packages installed in1156

the system is crucial; an altered package might compromise the security of the1157

whole platform.1158

This section is only related with security aspects, not the whole software distri-1159

bution update mechanism, which will be covered in a separate document. The1160

technology used for this is the same one used by Ubuntu. It’s called Secure1161

APT32 and was introduced in Debian in 2005.1162

Every Debian or Ubuntu package that is made available through an APT repos-1163

itory is hashed and the hash is stored on the file that lists what packages are1164

available, called the “Packages” file. That file is then hashed and the hash is1165

stored in the Release file33, which is signed using a PGP private key.1166

The public PGP key is shipped along with the product. When the package1167

manager obtains updates or new packages it checks that the signature on the1168

Release file is valid, and that all hashes match. The security of this approach1169

relies on the fact that any tampering with the package or with the Packages1170

file would make the hashes not match, and any changes done to the Release file1171

would render the signature invalid.1172

Additional public keys can be distributed through upgrades to a package that1173

ships installed; this is how Debian and Ubuntu distribute their public keys.1174

This mechanism can be used to add new third-party providers, or to replace the1175

keys used by the app store. Collabora will provide documentation and provide1176

assistance on setting up the package repositories and signing infrastructure.1177

Secure Boot1178

The objective of secure boot34 is to ensure that the system is booted using1179

sanctioned components. The extent to which this is ultimately taken will vary1180

between implementations, some may use secure boot avoid system kernel re-1181

placement, whilst others may also use it to ensure a Trusted Execution Envi-1182

ronment35 is loaded without interference.1183

32https://wiki.debian.org/SecureApt
33https://wiki.debian.org/SecureApt#Secure_apt_groundwork:_checksums
34https://sjoerd.pages.apertis.org/apertis-website/architecture/secure-boot/
35https://sjoerd.pages.apertis.org/apertis-website/concepts/op-tee/

34

https://wiki.debian.org/SecureApt
https://wiki.debian.org/SecureApt
https://wiki.debian.org/SecureApt
https://wiki.debian.org/SecureApt#Secure_apt_groundwork:_checksums
https://sjoerd.pages.apertis.org/apertis-website/architecture/secure-boot/
https://sjoerd.pages.apertis.org/apertis-website/concepts/op-tee/
https://sjoerd.pages.apertis.org/apertis-website/concepts/op-tee/
https://sjoerd.pages.apertis.org/apertis-website/concepts/op-tee/
https://wiki.debian.org/SecureApt
https://wiki.debian.org/SecureApt#Secure_apt_groundwork:_checksums
https://sjoerd.pages.apertis.org/apertis-website/architecture/secure-boot/
https://sjoerd.pages.apertis.org/apertis-website/concepts/op-tee/

The steps required to implement secure boot are vendor specific and thus the1184

full specification for the solution depends on a definition from the specific silicon1185

vendor, such as Freescale.1186

A solution that has been adopted by Freescale in the past is the High Assurance1187

Boot (HAB), which ensures two basic attributes: authenticity and integrity.1188

This is done by validating that the code image originated from a trusted source1189

(authenticity), and verify that the code is in its original form (integrity). HAB1190

uses digital signatures to validate the code images and thereby establishes the1191

security level of the system.1192

To verify the signature the device uses the Super Root Key (SRK) which is1193

stored on-chip in non-volatile memory. To enhance the robustness of HAB1194

security, multiple Super Root keys (RSA public keys) are stored in internal1195

ROM. Collabora recommends the utilization of SRK with 2048-bit RSA keys.1196

In case a signature check fails because of incomplete or broken upgrade it should1197

be possible to fall back to an earlier kernel automatically. Details of how that1198

would be achieved are only possible after details about the hardware support for1199

such a feature are provided by Freescale, and are probably best handled in the1200

document about safely upgrading, system snapshots and rolling back updates.1201

More discussion of system integrity checking, its limitations and alternatives1202

can be found later on, when the IMA system is investigated. See Conclusion1203

regarding IMA and EVM in particular.1204

The signature and verification processes are described in the Freescale white1205

paper “Security Features of the i.MX31 and i.MX31L”.1206

Data encryption and removal1207

Data encryption1208

The objective of data encryption is to protect the user data for security and1209

privacy reasons. In the event of the car being stolen, for instance, important1210

user data such as passwords should not be easily readable. While providing full1211

disk encryption is both not practical and harmful to overall system performance,1212

encryption of a limited set of the data such as saved passwords is possible.1213

The Secrets D-Bus service36 is a very practical way of storing passwords for1214

applications. Its GNOME implementation37 provides an easy to use API, uses1215

locked down memory38 when handling the passwords and encrypted storage for1216

the passwords on disk. Collabora will provide these tools in the base platform1217

and will support the implementation of secure password storage in the applica-1218

tions that will be developed.1219

36https://specifications.freedesktop.org/secret-service/latest/re01.html
37https://wiki.gnome.org/Projects/GnomeKeyring
38https://wiki.gnome.org/Projects/GnomeKeyring/Memory

35

https://specifications.freedesktop.org/secret-service/latest/re01.html
https://wiki.gnome.org/Projects/GnomeKeyring
https://wiki.gnome.org/Projects/GnomeKeyring/Memory
https://specifications.freedesktop.org/secret-service/latest/re01.html
https://wiki.gnome.org/Projects/GnomeKeyring
https://wiki.gnome.org/Projects/GnomeKeyring/Memory

One unresolved issue for data encryption, whether via the Secrets service, a1220

full-disk encryption system (as optionally used in Android) or some other im-1221

plementation, is that a secret token must be provided in order to decrypt the1222

encrypted data. This is normally a password, but prompting for a password is1223

likely to be undesired in an automotive environment. One possible implementa-1224

tion is to encode an unpredictable token in each car key, and use those tokens1225

to decrypt stored secrets, with any of the keys for a particular car equally able1226

to decrypt its data. In the simplest version of that implementation, loss of all1227

of the car keys would result in loss of access to the encrypted data, but the car1228

vendor could retain copies of the keys’ tokens (and a record of which car is the1229

relevant one) if desired1230

Data removal1231

A data removal feature is important to guarantee that personal user data that1232

resides on the device can be removed before the car changes hands, for instance.1233

Returning the device configuration to factory is also important because it allows1234

resetting of any customization and preferences.1235

Collabora recommends these features be implemented by making sure user data1236

and settings are stored in a separate storage area. By removing this area both1237

user data and configuration are removed.1238

Proper data wiping is only necessary to defeat forensic analysis of the hardware1239

and would not pose a privacy risk for the simpler cases of the car changing1240

hands. Such procedures rely on hardware support, so would only be possible1241

if that is in place, and even in that case they may be very time consuming.1242

It’s also worth noting that flash storage will usually perform wear levelling,1243

which defeats software techniques such as writing over a block multiple times.1244

Collabora recommends not supporting this feature.1245

Stack Protection1246

It is recommended to enable stack protection, which provides protection against1247

stack-based attacks such as a stack buffer overflow. Ubuntu, the distribution1248

used as a base for Apertis has enabled a stack protection mechanism offered by1249

GCC called SSP39. Modern processors have the capability to mark memory seg-1250

ments (like stack) executable or not, which can be used by applications to make1251

themselves safer. Some initial tests with the Freescale kernel 2.6.38 provided on1252

imx6 board shows correct enforcement behaviour.1253

Memory protection techniques like disabling execution of stack or heap memory1254

are not possible with some applications, in particular execution engines such as1255

programming language interpreters that include a just in time compiler, includ-1256

ing the ones for JavaScript currently present in most web engines. Cases such1257

39https://wiki.ubuntu.com/GccSsp

36

https://wiki.ubuntu.com/GccSsp
https://wiki.ubuntu.com/GccSsp

as this and also cases in which the limitations should apply but are not being1258

respected will be documented.1259

Collabora will also document best practices for building software with this fea-1260

ture so that others can take advantage of stack protection for higher level li-1261

braries and applications.1262

Confining applications in containers1263

LXC Containment1264

LXC40 is a solution that was developed to be a lightweight alternative to virtu-1265

alization, built on top of cgroups and namespaces, mainly. Its main focus is on1266

servers, though. The goal is to separate processes completely, including using1267

a different file system and a different network. This means the applications1268

running inside an LXC container are effectively running in a different system,1269

for all practical purposes. While this does have the potential of helping protect1270

the main system, it also brings with it huge problems with the integration of1271

the application with the system.1272

For graphical applications the X server will have to run with a TCP port open, so1273

that applications running in a container are able to connect, 3D acceleration will1274

be impossible or very difficult to achieve for applications running in a container.1275

D-Bus setup will be significantly more complex.1276

Besides increasing the complexity of the system, LXC essentially duplicates1277

functionality offered by cgroups, AppArmor, and the Netfilter firewall. When1278

LXC was originally suggested it was to be used only for system services. By1279

using systemd the Apertis system will already have every service on the system1280

running on their own cgroup, and properly locked down by AppArmor profiles.1281

This means adding LXC would only add redundancy and no additional value.1282

Protection for the driver assistance and limiting the damage root can do to the1283

system can both be achieved by AppArmor policies, which can be applied to1284

both system services and applications, as opposed to LXC, which would only1285

be safely applicable to services. There are no advantages at all in using LXC1286

for these cases. Limiting resources can also be easily done through cgroups,1287

which will not be limited to system services, too. For these reasons Collabora1288

recommends against using LXC.1289

Making X11, D-Bus and 3D work with LXC1290

For the sake of completeness, this section provides a description of possible1291

solutions for LXC shortcomings.1292

LXC creates what, for all practical purposes, is a separate system. X supports1293

TCP socket connections, so it could be made to work, but that would require1294

40https://linuxcontainers.org/

37

https://linuxcontainers.org/
https://linuxcontainers.org/

opening the TCP port and that would be another interface that needs protec-1295

tion.1296

D-Bus has the same pros and cons of X11 – it can be connected to over a TCP1297

port41, but that again increases the surface area that needs to be protected, and1298

adds complexity for managing the connection. It is also not a popular use case1299

so it does not get a lot of testing.1300

3D over network has not yet been made to work on networked X. All solutions1301

available, such as Virtual GL42 involve a lot of copying back and forth, which1302

would make performance suffer substantially, which is something that needs to1303

be avoided given the high importance of performance on Apertis requirements.1304

Collabora’s perspective is that using LXC for applications running on the user1305

session adds nothing that cannot be achieved with the means described in this1306

document, while at the same time adding complexity and indirection.1307

The Flatpak framework1308

Flatpak43 is a framework for “sandboxed” desktop applications, under develop-1309

ment by several GNOME developers. Like LXC, it makes use of existing Linux1310

infrastructure such as cgroups (see Resource usage control) and namespaces.1311

Unlike LXC, Flatpak’s design goals are focused on confining individual applica-1312

tions within a system, which makes it an interesting technology for Apertis. We1313

recommend researching Flatpak further, and evaluating its adoption as a way1314

to reduce the development effort for our sandboxed applications.1315

One secondary benefit of Flatpak is that by altering the application bundle’s1316

view of the filesystem, it can provide a way to manage major-version upgrades1317

without app-visible compatibility breaks, by continuing to run app bundles that1318

were designed for the old “runtime” in an environment more closely resembling1319

that old version, while using the new “runtime” for app bundles that have been1320

tested in that environment.1321

The IMA Linux Integrity Subsystem1322

The goal of the Integrity Measurement Architecture (IMA44) subsystem is to1323

make sure that a given set of files have not been altered and are authentic –1324

in other words, provided by a trusted source. The mechanism used to provide1325

these two features are essentially keeping a database of file hashes and RSA1326

signatures. IMA does not protect the system from changes, it is simply a way1327

of knowing that changes have been made so that measures to fix the problem1328

can be taken as quickly as possible. The authenticity module of IMA is still not1329

available, so we won’t be discussing it.1330

41https://www.freedesktop.org/wiki/Software/DBusRemote/
42https://virtualgl.org/
43https://flatpak.org/
44https://sourceforge.net/p/linux-ima/wiki/Home/

38

https://www.freedesktop.org/wiki/Software/DBusRemote/
https://www.freedesktop.org/wiki/Software/DBusRemote/
https://www.freedesktop.org/wiki/Software/DBusRemote/
https://virtualgl.org/
https://flatpak.org/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://www.freedesktop.org/wiki/Software/DBusRemote/
https://virtualgl.org/
https://flatpak.org/
https://sourceforge.net/p/linux-ima/wiki/Home/

In its simpler mode of operation, with the default policy IMA will intercept1331

calls that cause memory mapping and execution of a file or any access done by1332

root and perform a hash of the file before the access goes through. This means1333

execution of all binaries and loading of all libraries are intercepted. To hash a1334

file, IMA needs to read the whole file and calculate a cryptographic sum of its1335

contents. That hash is then kept in kernel memory and extended attributes of1336

the file system, for further verification after system reboots.1337

This means that running any program will cause its file and any libraries it uses1338

to be fully read and cryptographically processed before anything can be done1339

with it, which causes a significant impact in the performance of the system. A1340

10% impact has been reported45 by the IMA authors in boot time on a default1341

Fedora. There are no detailed information on how the test was performed, but1342

the performance impact of IMA is mainly caused by increased I/O required to1343

read the whole of all executable and library files used during the boot for hash1344

verification. All executables will take longer to start up after a system boot1345

up because they need to be fully read and hashed to verify they match what’s1346

recorded (if any recording exists).1347

The fact that the hashes are maintained in the file system extended attributes,1348

and are otherwise created from scratch when the file is first mapped or executed1349

means that in this mode IMA does not protect the system from modification1350

while offline: an attacker with physical access to the device can boot using a1351

different operating system modify files and reset the extended attributes. Those1352

changes will not be seen by IMA.1353

To overcome this problem IMA is able to work with the hardware’s trusted1354

platform module through the extended verification module (EVM46), added47 to1355

Linux in version 3.2: hashes of the extended attributes are signed by the trusted1356

platform module (TPM) hardware, and written to the file system as another1357

extended attribute. For this to work, though, TPM hardware is required. The1358

fact that TPM modules are currently only widely available and supported for1359

Intel-based platforms is also a problem.1360

Conclusion regarding IMA and EVM1361

IMA and EVM both are only useful for detecting that the system has been1362

modified. They do so using a method that incurs significant impact on the per-1363

formance, particularly application startup and system boot up. Considering the1364

strict boot up requirements for the Apertis system, this fact alone indicates that1365

IMA and EVM are suboptimal solutions. However, EVM and IMA also suffer1366

from being very new technologies as far as Linux mainline is concerned, and1367

have not been integrated and used by any major distributions. This means im-1368

plementing them in Apertis means incurring into significant development costs.1369

45https://blog.linuxplumbersconf.org/2009/slides/David-Stafford-IMA_LPC.pdf
46https://sourceforge.net/p/linux-ima/wiki/Home/#linux-extended-verification-module-

evm
47https://kernelnewbies.org/Linux_3.2#head-03576b924303bb0fad19cabb35efcbd33eeed084

39

https://blog.linuxplumbersconf.org/2009/slides/David-Stafford-IMA_LPC.pdf
https://sourceforge.net/p/linux-ima/wiki/Home/#linux-extended-verification-module-evm
https://kernelnewbies.org/Linux_3.2#head-03576b924303bb0fad19cabb35efcbd33eeed084
https://blog.linuxplumbersconf.org/2009/slides/David-Stafford-IMA_LPC.pdf
https://sourceforge.net/p/linux-ima/wiki/Home/#linux-extended-verification-module-evm
https://sourceforge.net/p/linux-ima/wiki/Home/#linux-extended-verification-module-evm
https://kernelnewbies.org/Linux_3.2#head-03576b924303bb0fad19cabb35efcbd33eeed084

In addition to that, Collabora believes that the goals of detecting breaches,1370

protecting the base system and validating the authenticity of system files are1371

attained in much better ways through other means, such as keeping the system1372

files separate and read-only during normal operation, and using secure methods1373

for installing and updating software, such as those described in Protecting the1374

driver assistance system from attacks.1375

For these reasons Collabora advises against the usage of IMA and EVM for this1376

project. An option to provide some security for the system in this case is making1377

it hard to disconnect and remove the actual storage device from the system, to1378

minimize the risk of tampering.1379

Seccomp1380

Seccomp48 is a sandboxing mechanism in the Linux kernel. In essence, it is a1381

way of specifying which system calls a process or thread should be able to make.1382

As such, it is very useful to isolate processes that have strict responsibilities.1383

For instance, a process that should not be able to write or read from the disk1384

should not be able to make an open system call.1385

Most security tools that were discussed in this document provide a system-1386

wide infrastructure and protect the system in a general way from outside the1387

application’s process. As opposed to those, seccomp is something that is very1388

granular and very application-specific: it needs to be built into the application1389

source code.1390

In other words, applications need to be written with an architecture which allows1391

a separation of concerns, isolating the work that deals with untrusted processes1392

or data to a separate process or thread that will then use seccomp filters to limit1393

the amount of damage it is able to do through system calls.1394

For use by applications, seccomp needs to be enabled in the kernel that is1395

shipped with the middleware. There is a library called libseccomp49, which1396

provides a more convenient way of specifying filters. Should feature be used1397

and made it available through the SDK, the seccomp support can be enabled1398

in the kernel and libseccomp can be shipped in the middleware image provided1399

by Collabora.1400

The seccomp filter should be used on system services designed for Apertis whose1401

architecture and intended functionality allow dropping privileges. Suppose, for1402

instance, that Apertis has a health management daemon which needs to be able1403

to kill applications that misbehave but has no need whatsoever of writing data1404

to a file descriptor. It might be possible to design that daemon to use seccomp1405

to filter out system calls such as open and write. The open system call might1406

need to be allowed to go through for opening files for reading, depending on how1407

the health daemon monitors processes – it might need to read information from1408

48https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
49https://lwn.net/Articles/494252/

40

https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://lwn.net/Articles/494252/
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://lwn.net/Articles/494252/

files in the /proc file system, for instance. For that reason, filtering for open1409

would need to be more granular, just disallowing it being called with certain1410

arguments.1411

Depending on how the health management daemon works it would also not1412

need to fork new processes itself, so filtering out system calls such as fork,1413

and clone is a possibility. As explained before, to take advantage of these1414

opportunities, the architecture of such a daemon needs to be thought through1415

from the onset with these limitations in mind. Opportunities, such as the ones1416

discussed here, should be evaluated on a case-by-case basis, for each service1417

intended for deployment on Apertis.1418

AppArmor and seccomp are complementary technologies, and can be used to-1419

gether. Some of their purposes overlap (for example, denying filesystem write1420

access altogether could be achieved equally well with either technology), and1421

they are both part of the kernel and hence in the TCB.1422

The main advantage of seccomp over AppArmor is that it inhibits all system1423

calls, however obscure: all system calls that were not considered when writ-1424

ing a policy are normally denied. Its in-kernel implementation is also simpler,1425

and hence potentially more robust, than AppArmor. This makes it suitable1426

for containing a module whose functionality has been designed to be strongly1427

focused on computation with minimal I/O requirements, for example the render-1428

ing modules of browser engines such as WebKit2. However, its applicability to1429

code that was not designed to be suitable for seccomp is limited. For example,1430

if the confined module has a legitimate need to open files, then its seccomp filter1431

will need to allow broad categories of file to be opened.1432

The main advantage of AppArmor over seccomp is that it can perform finer-1433

grained checking on the arguments and context of a system call, for example1434

allowing filesystem reads from files owned by the process’s uid, but denying1435

reads from other uids’ files. This makes it possible to confine existing general-1436

purpose components using AppArmor, with little or no change to the confined1437

component. Conversely, it groups together closely-related system calls with sim-1438

ilar security implications into an abstract operation such as “read” or “write”,1439

making it considerably easier to write correct profiles.1440

The role of the app store process for security1441

The model which is used for the application stores should precludes automated1442

publishing of software to the store by developers. All software, including new1443

versions of existing applications will have to go through an audit before publish-1444

ing.1445

The app store vetting process will generate the final package that will reach1446

the store front. That means only signatures made by the app store curator’s1447

cryptographic keys will be valid, for instance. Another consequence of this1448

approach is that the curator will have not only the final say on what goes in,1449

41

but will also be able to change pieces of the package to, say, disallow a given1450

permission the application’s author specified in the application’s manifest.1451

This also presents a good opportunity to convert high level descriptions such1452

as the permissions in the manifest and an overall description of files used into1453

concrete configuration files such as AppArmor profiles in a centralized fashion,1454

and provides the curator with the ability to fine tune said configurations for1455

specific devices or even to rework how a given resource is protected itself, with1456

no need for intervention from third-parties.1457

Most importantly, from the perspective of this document, is the fact that the app1458

store vetting process provides an opportunity for final screening of submissions1459

for security issues or bad practices both in terms of code and user interface, so1460

that should be taken into consideration.1461

How does security affect developer usage of a device?1462

How security impacts a developer mode depends heavily on how that developer1463

mode of work is specified. This chapter considers that the two main use cases1464

for such a mode would be installing an application directly to the target through1465

the Eclipse install to target plugin and running a remote debugging session for1466

the application, both of which are topics discussed in the SDK design.1467

The install to target functionality that was made available through an Eclipse1468

plugin uses an sftp connection with an arbitrary user and password pair to1469

connect to the device. This means that putting the device in developer mode1470

should ensure the ssh server is running and add an exception to the firewall1471

rules discussed in Network filtering, to allow an inbound connection to port 22.1472

Upon login, the SSH server will start user sessions that are not constrained by1473

the AppArmor infrastructure. In particular the white-list policy discussed in1474

section Implementing a white list approach, will not apply to ssh user sessions.1475

This means the user the IDE will connect with needs file system access to the1476

directory where the application needs to be installed or be able to tell the1477

application installer to install it.1478

The procedure for installing an application using an sftp connection is not1479

too different from the install app from USB stick use case described in the1480

Applications document, that similarity could be exploited to share code for1481

these features.1482

The main difference is the developer mode would need to either ignore signature1483

checking or accept a special “developer” signature for the packages. Decision on1484

how to implement this piece of the feature needs a more complete assessment1485

of proposed solutions on how the app store and system DRM could work, and1486

how open (or openable) the end user devices will be.1487

Running the application for remote debugging also requires that the gdb-1488

server‘s default port, 2345, be open. Other than that, the main security1489

42

constraint that will need to be tweaked when the system is put in developer1490

mode is AppArmor. While under developer mode AppArmor should probably1491

be put in complain mode, since the application’s own profile will not yet exist.1492

Further discussion1493

This chapter lists topics that require further thinking and/or discussion, or a1494

more detailed design. These may be better written as Wiki pages rather than1495

formal designs, given they require and benefit from iterating on an implementa-1496

tion.1497

• Define which cgroups (Resource usage control) to have, how they will be1498

created and managed1499

• Define exactly what Netfilter rules (Network filtering) should be installed1500

and how they will be made effective at boot time1501

• Evaluate Flatpak (The Flatpak framework)1502

43

	Terminology
	Privilege
	Trust
	Integrity, confidentiality and availability

	Security boundaries and threat model
	Security between applications
	Communication between applications
	Security between users
	Security between platform services
	Security between the device and the network
	Physical security

	Solutions adopted by popular platforms
	Android
	Bada
	iOS

	Mandatory Access Control
	Linux Security Modules (LSM)
	Comparison
	Performance impact
	Conclusion

	polkit (PolicyKit)
	Motivation for polkit
	polkit's solution
	Recommendation

	Resource Usage Control
	Imposing limits on I/O for block devices

	Network filtering
	Protecting the driver assistance system from attacks
	Protecting devices whose usage is restricted

	Protecting the system from Internet threats
	Other sources of potential exploitation

	Secure Software Distribution
	Secure Boot
	Data encryption and removal
	Data encryption
	Data removal

	Stack Protection
	Confining applications in containers
	LXC Containment
	The Flatpak framework

	The IMA Linux Integrity Subsystem
	Conclusion regarding IMA and EVM

	Seccomp
	The role of the app store process for security
	How does security affect developer usage of a device?
	Further discussion

