
List design

Contents1

List design 22

Terminology and concepts . 23

Vehicle . 24

System . 25

User . 26

Widget . 37

User interface . 38

Roller . 39

Application author . 310

Variant . 311

Use cases . 312

Common API . 313

MVC separation . 314

Data backend agnosticity . 415

Kinetic scrolling . 416

Roller focus handling . 417

Animations . 418

Item launching . 519

Header and footer . 520

Roller rollover . 521

Widget size . 522

Click activation . 523

Consistent focus . 524

Focus animation . 625

Mutable list . 626

UI customisation . 627

Blur effect . 628

Scrollbar . 629

Hardware scroll . 630

On-demand item resource loading 631

Scroll bubbles . 732

Item headers . 733

List with tens of thousands of items 734

Flow layout . 735

Concurrent presentation of the same model in different list widgets 736

Non-use cases . 737

Tree views . 738

List widget without a backing model 739

Sticky header and footer . 840

Requirements . 841

Common API . 842

MVC separation . 843

Data backend agnosticity . 844

Kinetic scrolling . 845

2

Item focus . 946

Roller focus handling . 947

Animations . 948

Item launching . 949

Header and footer . 1050

Roller rollover . 1051

Widget size . 1052

Consistent focus . 1053

Focus animation . 1054

Mutable list . 1055

UI customisation . 1156

Blur effect . 1157

Scrollbar . 1158

Hardware scroll . 1159

On-demand item resource loading 1160

Scroll bubbles . 1161

Item headers . 1162

Lazy list model . 1263

Flow layout . 1264

Reusable model . 1265

Approach . 1266

Adapter interface . 1267

GtkListBox . 1468

GtkFlowBox . 1469

Widget size . 1470

Adapter/Model implementation 1571

Decoupled model . 1672

Lazy object creation . 1673

High-level helpers . 1774

UI customisation . 1875

Sorting . 1876

Filtering . 1877

Header and footer . 1978

Selections . 1979

Item headers . 2080

Sticky item headers . 2081

Blur effect . 2182

On-demand item resource loading 2183

Scroll bubbles . 2184

Roller subclass . 2185

Column layout . 2286

Focus animation . 2287

Item launching . 2288

API diagram . 2389

Example API usage . 2390

Basic usage . 2391

3

Item activation . 2392

Filtering . 2493

Multiple selection . 2494

Non-selectable items . 2495

Header items . 2496

On-demand item resource loading 2497

Generic adapter . 2498

Alternative list adapter . 2499

Requirements . 25100

Summary of recommendations . 26101

Appendix . 27102

Existing roller design . 27103

List design104

The goal of this list design document is to establish an appropriate architecture105

and API design for the list widgets in the Apertis platform.106

Historically, the roller widget has provided a list widget on a cylinder with no107

conceptual beginning or end and is manipulated naturally by the user. For non-108

cylindrical lists there was a separate widget with a different API and different109

usage. The goal is to consolidate list operations into a base class and be able to110

use the same simple API to use both cylindrical lists and non-cylindrical lists.111

112

The above shows an example of the roller widget in use inside the music appli-113

cation. There are multiple roller widgets for showing album, artist, and song.114

Although they are manipulated independently, their contents are linked.115

Terminology and concepts116

Vehicle117

For the purposes of this document, a vehicle may be a car, car trailer, motorbike,118

bus, truck tractor, truck trailer, agricultural tractor, or agricultural trailer,119

amongst other things.120

4

System121

The system is the infotainment computer in its entirety in place inside the122

vehicle.123

User124

The user is the person using the system, be it the driver of the vehicle or a125

passenger in the vehicle.126

Widget127

A widget is a reusable part of the user interface which can be changed depending128

on location and function.129

User interface130

The user interface is the group of all widgets in place in a certain layout to131

represent a specific use-case.132

Roller133

The roller is a list widget named after a cylinder which revolves around its134

central horizontal axis. As a result of being a cylinder it has no specific start135

and finish and appears endless.136

Application author137

The application author is the developer tasked with writing an application using138

the widgets described in this document. They cannot modify the variant or the139

user interface library.140

Variant141

A variant is a customised version of the system by a particular system integrator.142

Usually variants are personalised with particular colour schemes and logos and143

potentially different widget behaviour.144

Use cases145

A variety of use cases for list design are given below.146

Common API147

An application author wants to add a list widget to their application. At that148

moment it is not known whether a simple list widget or a roller widget will suit149

the application better. Said application author doesn’t want to have a high150

overhead in migrating code from one widget to another.151

5

MVC separation152

A group of application authors wants to be able to split the work involved in153

developing their application into teams such that, adhering to the interfaces154

provided, they can develop the different parts of the application and easily put155

them together at the end.156

Data backend agnosticity157

An application author wishes to display data stored in a database, and does not158

want to duplicate this data in an intermediary data structure in order to do so.159

Kinetic scrolling160

The user wants to be able to scroll lists using their finger in such a way that the161

visual response of the list is as expected. Additionally, the system integrator162

wants the user to have visual feedback when the start or end of a list is reached163

by the list bouncing up and back down (the elastic effect). However, another164

system integrator wants to disable this effect.165

The user expectations include the following:166

• The user expects the scroll to only occur after a natural threshold of167

movement (as opposed to a tap), for the list to continue scrolling after168

having removed their finger, and for the rate of scroll to decrease with169

time.170

• The user expects to be able to stop a scroll by tapping and holding the171

scrolling area.172

• The user expects a flick gesture to re-accelerate a scroll without any visible173

stops in the animation.174

• The user expects video elements to continue playing during a scroll.175

• When there are not enough items to fill the entire height of the list area176

the user expects a scroll to occur but using the elastic effect fall back to177

the centre.178

• The user expects a horizontal scroll gesture to not also scroll in the vertical179

direction.180

Roller focus handling181

In the roller widget, the user wants the concept of focus to be highlighted by182

the list scrolling such that the focused row is in the vertical centre.183

Additionally, the user wants to be able to easily focus another unfocused visible184

item in the list simply by pressing it.185

6

Animations186

The user wants to have a smooth and natural experience in using either list187

widget. If the scrolling stops half-way into an item and it is required that one188

item is focused (seeroller focus handling), they want the list to bounce a small189

scroll to focus said item.190

Item launching191

An application author wants to be able to perform some application-specific192

behaviour in response to the selecting of an item in the list. However, they193

want to provide some confirmation before launching an item in a list. They194

want the two step process to be:195

1. The desired item is focused by scrolling to it or tapping on it.196

2. The focused item is tapped again which confirms the intention to launch197

it.198

Header and footer199

The application author wants to add a header to the column to make it clear200

exactly what is in said column. (An example can be seen in List design in the201

music application.)202

Another system integrator wants the column names to be shown above the203

widget in a footer instead of a header.204

Roller rollover205

In the roller widget, by definition, the user wants to scroll from the last item in206

the list back to the first without having to go all the way back up.207

Additionally, the user wants the wrap around to be made more visually obvious208

with increased resistance when scrolling past the fold between end and start209

again.210

Widget size211

The application author wants any list widget to expand into space allocated to212

it by its layout manager. If there are not enough items in the list to fill all213

available space said application author wants the remaining space to be blank,214

but still used by the list widget.215

Click activation216

A system integrator wants to choose between single click and double click ac-217

tivation (seeitem launching) for use in the list widgets. This is only expected218

once the item has already been focused (see alsoroller focus handling).219

7

The decision of single or double click is given to the system integrator instead220

of the application author in order to retain a consistent user experience.221

Consistent focus222

The user focuses an item in the list and a new item is added. The user expects223

the new item not to change the scroll position of the list and more importantly224

not to change the currently focused row.225

Focus animation226

An application author wants an item in the list to be able to perform an anima-227

tion after being focused.228

Mutable list229

An application author wants to be able to change the contents of a list shown230

in the user interface after having created the widget and shown it in the user231

interface.232

UI customisation233

A system integrator wants to change the look and feel of a list widget without234

having to change any of the application code.235

Blur effect236

A system integrator wants items in the list to be slightly blurred when scrolling237

fast to exaggerate the scrolling effect. Another system integrator wants to dis-238

able this blur.239

Scrollbar240

A system integrator wants a scrollbar to be visible for controlling the scrolling241

of the list. Another system integrator doesn’t want the scrollbar visible.242

Hardware scroll243

A system integrator wants to use hardware buttons to facilitate moving the244

focus up and down the list. The system integrator wants the list to scroll in245

pages and for the focus to remain in order. For example, a list contains items246

A, B, C, and D. When the down hardware button down is pressed, the page247

moves down to show items E, F, G, and H, and the focus moves to item E as it248

is the first on the page.249

8

On-demand item resource loading250

The music application lists hundreds of albums but the application author251

doesn’t want the album art thumbnail to be loaded for every item immediately252

as it would take too long and slow the system down. Instead, said applica-253

tion author wants album art thumbnail to load only once visible and have a254

placeholder picture in place until then.255

Scroll bubbles256

A system integrator wants bubbles1 to appear when scrolling and disappear257

when scrolling has stopped.258

Item headers259

An application author wants to display items in a list but have a logical separa-260

tion into sections. For example, in a music application, listing all tracks of an261

artist and separating by album.262

Another application author wants said headers to stick to the top of the widget263

so they are always visible, even if the first item has been scrolled past and is no264

longer visible.265

List with tens of thousands of items266

An application author wants to display a list containing thousands of items,267

but does not want to incur the initial cost of instantiating all the items when268

creating the list.269

Flow layout270

An application author wants the list widget to render as a grid with multiple271

items on the same line. The following video shows such a grid layout.272

Concurrent presentation of the same model in different list widgets273

An application author wants to present the same model in two side-by-side list274

widgets, possibly with different filtering or sorting.275

Non-use cases276

A variety of non-use cases for the list design are given below.277

Tree views278

An application author wants to show the filesystem hierarchy in their applica-279

tion. They understand that multi-dimension models (or trees) where items can280

1http://i.stack.imgur.com/YyRtC.png

9

http://i.stack.imgur.com/YyRtC.png
http://i.stack.imgur.com/YyRtC.png

be children of other items are not supported by the Apertis list widgets (hence281

the name list).282

List widget without a backing model283

An application wants to display a list of items in the list widget, but does not284

wish to create a model and pass it to the list widget, and would rather use285

helper functions in the list widget, such as list_add_item(List *list, ListItem286

*item).287

Such an interface is not considered necessary, at least for this version of the288

design document, because we want to encourage use of models so that the UI289

views themselves can be rearranged more easily.290

If, in the future, such an interface was considered desirable, its API should be291

similar to the GtkListBox2 API, such as gtk_list_box_row_changed().292

Sticky header and footer293

An application developer wants an actor to stick to the top or the bottom of294

the list widget, and always be visible regardless of scrolling.295

This is best handled as a separate actor, sharing a common parent with the list296

widget.297

Requirements298

Common API299

There should be a common API between both list widgets (seecommon api).300

Changing from a list widget to a roller widget or the other way around should301

involve only trivial changes to the code leading to a change in behaviour.302

MVC separation303

The separation between components that use the list widgets should be func-304

tional and enable application authors and system integrators to swap out parts305

of applications easily and quickly (seemvc separation).306

The implementation of the model should be of no impact to the functionality307

of the widget. As a result the widget should only refer to the model using an308

interface which all models can implement.309

Data backend agnosticity310

The widget should not require application authors to store their backing model311

in any particular way.312

2https://developer.gnome.org/gtk3/stable/GtkListBox.html

10

https://developer.gnome.org/gtk3/stable/GtkListBox.html
https://developer.gnome.org/gtk3/stable/GtkListBox.html

Kinetic scrolling313

Both list widgets should support kinetic scrolling from user inputs (seekinetic314

scrolling). That is, when the user scrolls using their finger, he or she can flick315

the list up or down and the scroll will continue after the finger is released and316

gradually slow down. This animation should feel natural to the user as if he or317

she is moving a wheel up or down, with minimal friction. The animation should318

also be easily stopped by tapping once.319

Elastic effect320

In the list widget with a defined start and finish, on trying to scroll there should321

be visual feedback that the start or finish of the list has been reached. This322

visual feedback should be accomplished using the elastic effect. That is, when323

the bottom is reached and further downward scrolling is attempted, an empty324

space slowly appears with resistance, and pops back when the user releases their325

finger.326

This is not necessary on the roller widget because the list loops and there is no327

defined start and finish to the list.328

It should be easy to turn this feature off as it may be undesired by the system329

integrator (seekinetic scrolling).330

Item focus331

In both list and roller widgets there should be a concept of focus which only332

one item has at any one point. How to display which item has focus depends333

on the widget.334

Roller focus handling335

In the roller widget the focused item should always be in the vertical centre of336

the widget (seeroller focus handling). The focused item should visually change337

and even expand if necessary to demonstrate its focused state (see alsofocus338

animation).339

Changing which item is focused should be possible by clicking on another item340

in the list.341

Animations342

It should be possible to add animations to widgets to allow for moving the343

current scroll location of the list up or down (seeanimations). This should be344

customisable by the system integrator and application author depending on the345

application in question but should retain the general look and feel across the346

entire system.347

11

Item launching348

Focused items (see Item focus) should be able to be launched using widget-349

specific bindings (clicks or touches) (see Click activation).350

Header and footer351

It should be possible to add a header to a list to provide more context as to352

what the information is showing (seeheader and footer and the screenshot in353

List design). This should be customisable by the application author and should354

be consistent across the entire system.355

Roller rollover356

The rollover of the two list widgets should be different and customisable by the357

system integrator (seeroller rollover andui customisation).358

The roller widget should roll over from the end of the list back to the beginning359

again, like a cylinder would (see List design and Roller). Additionally the system360

integrator should be able to customise whether they want extra resistance in361

going back to the beginning. This is visual feedback to ensure the user knows362

they are returning to the beginning of the list.363

The non-roller list widget should not have a rollover and should have a well-364

defined start and finish, with visual effects as appropriate (see Elastic effect).365

Widget size366

The list widgets should expand to fill out all space that has been provided to367

them (seewidget size). They should fill any space not required with a blank368

colour, specified by the variant UI customisation (seeui customisation).369

Consistent focus370

The focus of items in a list should remain consistent despite modification of the371

list contents (seeconsistent focus). Adding items before or after the currently372

focused item shouldn’t change its focused state.373

Focus animation374

The application author and system integrator should be able to specify whether375

there is an animation in selecting an item in a list (seefocus animation andui376

customisation). This could mean expanding an item to make the item focused377

larger vertically and even display extra controls which were previously hidden378

under the fold.379

During this animation, input should not be possible.380

12

Mutable list381

The items shown in the list widgets and their content should update dynamically382

when the model backing the widget is updated (seemutable list). This should383

require no extra effort on the part of the application author.384

UI customisation385

Both list widgets should be visibly customisable in the same way the rest of the386

system is and should honour UI customisations made by the system integrator387

(seeui customisation). In this way, the list widgets should use CSS (see the UI388

Customisation Design document) for styling.389

Blur effect390

The list widget should support slightly blurring list items only when scrolling391

(seeblur effect). It should be easily to disable this feature by another system392

integrator who doesn’t want the blur.393

Scrollbar394

The list widget should support showing and hiding a scrollbar as necessary395

(seescrollbar). It should be easy to disable this feature by another system inte-396

grator who doesn’t want to display a scrollbar.397

Hardware scroll398

The list widget should support scrolling using hardware buttons and therefore399

always have one item focused hardware scroll). Hardware button callbacks400

should use the adjustments3 on the list widget to change the subset of visible401

items and the appropriate list widget function for moving the focus to the next402

item. Hardware button signals are generated as described in the Hardkeys403

Design.404

On-demand item resource loading405

Items in the list need to know when they are visible (and not past the current406

scroll area) so they know when to load expensive resources, such as thumbnails407

from disk (see On-demand item resource loading).408

Scroll bubbles409

The scrollbar (see alsoscrollbar) should support showing bubbles to show the410

scroll position (seescroll bubbles). It should be possible to disable the bubble411

and change its appearance when necessary.412

3https://github.com/clutter-project/mx/blob/master/mx/mx-scrollable.h

13

https://github.com/clutter-project/mx/blob/master/mx/mx-scrollable.h
https://github.com/clutter-project/mx/blob/master/mx/mx-scrollable.h

Item headers413

It should be possible to add separating headers to sets of items in the list widgets414

(seeitem headers). Said headers should also be sticky if specified.415

Lazy list model416

It should be possible to provide a ‘lazy list store’ to the widget, in which items417

would be created on demand, when they need to be displayed to the user.418

This model could make memory usage and instantiation performance indepen-419

dent of the number of items in the model.420

See List with tens of thousands of items421

Flow layout422

It should be possible for n items, each of the same width and height, to be423

packed in the same row of the list, where n is calculated as the floor of the list424

width divided by the item width. There is no need for the programmer to set n425

manually.426

Reusable model427

The underlying model should not have to be duplicated in order to present it428

in multiple list widgets at the same time.429

See Concurrent presentation of the same model in different list widgets430

Approach431

Adapter interface432

As required bydata backend agnosticity1, the backing data model format should433

not be imposed by the list widget upon the application developer.434

As such, an ‘adapter’ is required, similar to Android’s ListAdapter4, this adapter435

will make the bridge between the list widget and the data that backs the list, by436

formatting data from the underlying model as list item widgets for rendering.437

The following diagram illustrates how this adapter helps decoupling the list438

widget from the underlying model.439

4https://developer.android.com/reference/android/widget/ListAdapter.html

14

https://developer.android.com/reference/android/widget/ListAdapter.html
https://developer.android.com/reference/android/widget/ListAdapter.html

440

In the above example, we assume a program that simply displays a441

list widget exposing items stored in a database, and an adapter that442

stores strong references to the created list items, and will eventually443

cache them all if the list widget is fully scrolled down by the user.444

This is as opposed to the approach presented in Lazy list model445

where memory usage is also taken into account.446

The ‘cursor’ is a representation of whatever database access API is447

in use, as most databases use cursor-based APIs for reading.448

An interface for this adapter (the contents of the list widgets) is required such449

that it can be swapped out easily where necessary (seemvc separation, Lazy list450

model).451

GLib recently (since version 2.44) added an interface for this very task. GList-452

Model5 is an implementation-agnostic interface for representing lists in a single453

dimension. It does not support tree models (see Tree views) and contains ev-454

erything required for the requirements specified in this document.455

It should be noted that GListModel, which is for arbitrary containers, is entirely456

unrelated to the GList data structure, which is for doubly linked lists.457

In addition to functions for accessing the contents of the adapter, there is also an458

items-changed signal for notifying the view (the list widget and list item widgets459

it contains; seemvc separation) that it should re-render as a result of something460

changing in the adapter.461

5https://developer.gnome.org/gio/stable/GListModel.html

15

https://developer.gnome.org/gio/stable/GListModel.html
https://developer.gnome.org/gio/stable/GListModel.html
https://developer.gnome.org/gio/stable/GListModel.html
https://developer.gnome.org/gio/stable/GListModel.html

GtkListBox462

GtkListBox6 is a GTK+ widget added in 3.10 as a replacement for the very463

complicated GtkTreeView7 widget. GtkTreeView is used for displaying complex464

trees with customisable cell renderers, but more often lists are used instead of465

trees.466

GtkListBox doesn’t have a separate model backing it (but one can be used), and467

each item is a GtkListBoxRow (which is in turn a GtkWidget). This makes using468

the widget and modifying its contents especially easy using the GtkContainer8469

functions. Items can be activated (seeitem launching or selected (see Item focus).470

GtkListBox has been used in many GNOME applications since its addition and471

has shown that its API is sufficient for most simple use cases, with a limited472

number of items.473

However GtkListBox is not scalable, as its interface requires that all its rows be474

instantiated at initialisation, in order for example to add headers to sections,475

and still be able to scroll accurately to any random position in the list (random476

access).477

As such, its API is only of a limited interest to us, particularly when it comes478

toitem headers orfiltering.479

GtkFlowBox480

[GtkFlowBox] is a GTK+ widget added in 3.12 as a complement to GtkListBox.481

Its API takes a similar approach to that of GtkListBox: it doesn’t have a separate482

model backing it – but one can be used – and each item is a GtkFlowBoxChild483

which contains the content for that item.484

As with GtkListBox, its API is interesting to us for its approach to reflowing485

children; see Column layout.486

Widget size487

The list widgets should expand to fill space assigned to them (seewidget size).488

This means that when there are too few items to fill space the remaining space489

should be filled appropriately, but when there are more items than can be shown490

at one time the list should be put into a scrolling container.491

In Clutter, actors are made to expand to fill the space they have been assigned492

by setting the x-expand and y-expand properties on ClutterActor. For example:493

6https://developer.gnome.org/gtk3/stable/GtkListBox.html
7https://developer.gnome.org/gtk3/stable/GtkTreeView.html
8https://developer.gnome.org/gtk3/stable/GtkContainer.html

16

https://developer.gnome.org/gtk3/stable/GtkListBox.html
https://developer.gnome.org/gtk3/stable/GtkTreeView.html
https://developer.gnome.org/gtk3/stable/GtkContainer.html
https://developer.gnome.org/gtk3/stable/GtkListBox.html
https://developer.gnome.org/gtk3/stable/GtkTreeView.html
https://developer.gnome.org/gtk3/stable/GtkContainer.html

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

/* this actor will expand into horizontal space, but not into vertical

* space, allocated to it. */

clutter_actor_set_x_expand (first_actor, TRUE);

clutter_actor_set_y_expand (first_actor, FALSE);

/* this actor will expand into vertical space, but not into horizontal

* space, allocated to it. */

clutter_actor_set_x_expand (second_actor, FALSE);

clutter_actor_set_y_expand (second_actor, TRUE);

/* this actor will stretch to fill all allocated space, the

* default behaviour. */

clutter_actor_set_x_align (third_actor, CLUTTER_ACTOR_ALIGN_FILL);

/* this actor will be centered inside the allocation. */

clutter_actor_set_x_align (fourth_actor, CLUTTER_ACTOR_ALIGN_CENTER);

More details can be found in the ClutterActor9 documentation.494

The list item widgets (as described inadaptermodel implementation) are packed495

by the list widget and so application authors have no control over their expand-496

ing or alignment.497

A suitable scrolling container to put a list widget into is the MxKineticScrol-498

lView10 as it provides kinetic scrolling (seekinetic scrolling and Elastic effect)499

using touch events. Additionally, the MxKineticScrollView should be put into an500

MxScrollView to get a scrollbar where appropriate (seescrollbar).501

For support of MxKineticScrollView the list widgets should implement the502

MxScrollable interface, which allows getting and setting the adjustments, and503

is necessary in showing a viewport into the interface504

The exact dimensions in pixels for the widget shouldn’t be specified by the505

application author as it means changes to the appearance desired by a system506

integrator are much more difficult to achieve.507

Adapter/Model implementation508

As highlighted before (in Adapter interface), the list widget should make no509

assumption about how the backing data is stored. An adapter data structure510

should be provided, making the bridge between the backing data and the list511

widget, by returning list item actors for any given position.512

9https://developer.gnome.org/clutter/stable/ClutterActor.html
10https://github.com/clutter-project/mx/blob/master/mx/mx-kinetic-scroll-view.h

17

https://developer.gnome.org/clutter/stable/ClutterActor.html
https://github.com/clutter-project/mx/blob/master/mx/mx-kinetic-scroll-view.h
https://github.com/clutter-project/mx/blob/master/mx/mx-kinetic-scroll-view.h
https://github.com/clutter-project/mx/blob/master/mx/mx-kinetic-scroll-view.h
https://developer.gnome.org/clutter/stable/ClutterActor.html
https://github.com/clutter-project/mx/blob/master/mx/mx-kinetic-scroll-view.h

The GListModel interface requires all its contained items to be GObjects with the513

same GType11.514

It is suggested that the items themselves are all instances of a new ListItem class,515

which will inherit from ClutterActor, and implement selection and activation516

logic.517

GListStore12 is an object in GLib which implements GListModel. It provides518

functions for inserting and appending items to the model but no more. For519

small lists, it is suggested to either use GListStore directly or implement a thin520

subclass to give more type safety and better-adapted function signatures.521

In these simple cases, GListStore will act as both the adapter and the backing522

model, as it is storing ListItem widgets. For more complicated use cases (where523

the same data source is being used by multiple list widgets), the adapter and524

backing model must be separated, and hence GListStore is not appropriate as525

the adapter in those cases. See Decoupled model.526

Decoupled model527

As shown in Adapter interface, the list widget will not directly interact with the528

underlying data model, but through an ‘adapter’.529

The following diagram shows how the same underlying model may be queried530

by two different list widgets, and their corresponding adapters.531

532

List widgets are the outermost boxes in the diagram; the adapters533

are the next boxes inwards; and the middle box is the shared data534

model (a database).535

The ‘cursors’ in the above diagram are a representation of whatever536

database access API is in use, as most databases use cursor-based537

APIs for reading.538

Lazy object creation539

GListModel allows an implementation to create items lazily (only create or up-540

date items on screen and next to be displayed when a scroll is initiated) for541

performance reasons. This is recommended for applications with a very large542

number of items, so a new ListItem isn’t required for every single item in the543

list at initialisation.544

11https://developer.gnome.org/gio/stable/GListModel.html#GListModel.description
12https://developer.gnome.org/gio/stable/GListStore.html

18

https://developer.gnome.org/gio/stable/GListModel.html#GListModel.description
https://developer.gnome.org/gio/stable/GListModel.html#GListModel.description
https://developer.gnome.org/gio/stable/GListModel.html#GListModel.description
https://developer.gnome.org/gio/stable/GListStore.html
https://developer.gnome.org/gio/stable/GListModel.html#GListModel.description
https://developer.gnome.org/gio/stable/GListStore.html

GListStore does not support lazy object creation so an alternative model will545

need to be implemented by applications which need to deal with huge models.546

An example for this is provided in Alternative list adapter.547

High-level helpers548

Higher-level API should be provided in order to facilitate common usage sce-549

narios, in the form of an adapter implementation.550

This adapter should be instantiatable from various common data mod-551

els, through constructors such as: list_adapter_new_from_g_list_model or552

list_adapter_new_from_g_list.553

This default adapter should automatically generate an appropriate UI for the554

individual objects contained in the data model, with the only requirement that555

they all be instances of the same GObject subclass. This requirement should be556

clearly documented, as it won’t be possible to enforce it at instantiation time557

for certain data models, such as GList, without iterating on all its nodes, thus558

forbidding the generic adapter from adopting a lazy loading strategy.559

The default behaviour of the adapter should be to provide a UI for all the560

properties exposed by the objects (provided it knows how to handle them), but561

much like the Django admin site13, it should be easy for the user to modify562

which of these properties are displayed, and the order in which they should563

be displayed, using a set_fields() method. The suggested set_fields() API564

would take a non-empty ordered list of property names for the properties of565

the objects in the model which the adapter should display. For example, if the566

model contains objects which represent music artists, and each of those objects567

has name, genre and photo properties, the adapter would try to create row widgets568

which display all three properties. If set_fields (['name', 'genre']) were called569

on the adapter, it would instead try to only display the name and genre for the570

artist (name first, genre second), and not their photo. The layout algorithm571

used for presenting these properties generically in the UI is not prescribed here.572

This generic adapter should expose virtual methods to allow potential subclasses573

to provide their own list item widgets for properties that may or may not be574

handled by the default implementation, and to provide their own list item wid-575

gets for each of the GObjects in the model. These are represented by cre-576

ate_view_for_property() and create_view_for_object() on the API diagram.577

The adapter should use weak references on the created list items, as examplified578

in Alternative list adapter.579

Filtering and sorting should be implemented by this adapter, with the option580

for the user to provide implementations of the sorting and filtering methods,581

and to trigger the sorting and filtering of the adapter. It should be clearly582

13https://docs.djangoproject.com/en/1.10/ref/contrib/admin/#django.contrib.admin.
ModelAdmin.fields

19

https://docs.djangoproject.com/en/1.10/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fields
https://docs.djangoproject.com/en/1.10/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fields
https://docs.djangoproject.com/en/1.10/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fields

documented that these operations may be expensive, as the adapter will have583

no other option than iterating over the whole model.584

If developers want to use the list widget with an underlying model that allows585

more efficient sorting and filtering (for example a database), they should imple-586

ment their own adapter.587

Refer to the API diagram for a more formal view of the proposed API, and to588

the Generic adapter section for a practical usage example.589

UI customisation590

The list and list item widgets should be ApertisWidget subclasses (which are591

in turn ClutterActors) to take advantage of the GtkApertisStylable mixin that592

ApertisWidget uses. This adds support for styling the widget using CSS and593

other style providers14 which can be customised by system integrators.594

As the list item widgets are customisable widgets, they can appear any way the595

application author wants. This means that it is up to the application author596

to decide on theming decisions. Apertis-provided list item widgets will clearly597

document the CSS classes that affect their appearance.598

Sorting599

Sorting the model is built into the GListStore. When adding a new item to the600

adapter g_list_store_insert_sorted is used with the third argument pointing to601

a function to help sort the model. All items can be sorted at once using the602

g_list_store_sort function, passing in the same or different sorting function.603

When using an Alternative list adapter, sorting will need to be implemented on604

a case-by-case basis.605

Filtering606

As with GtkListBox when bound to a model, filtering should be implemented by607

updating the contents of the adapter.608

The list widget will be connected to the adapter, and will update itself appro-609

priately when notified of changes.610

An example of this is shown in the next section, the following diagram illustrates611

the filtering process.612

14https://developer.gnome.org/gtk3/stable/GtkStyleProvider.html

20

https://developer.gnome.org/gtk3/stable/GtkStyleProvider.html
https://developer.gnome.org/gtk3/stable/GtkStyleProvider.html

613

The ‘cursors’ in the above diagram are a representation of whatever614

database access API is in use, as most databases use cursor-based615

APIs for reading.616

Header and footer617

The header should be a regular ApertisWidget, passed to the list widget as a618

header property. It will be rendered above the body of the list widget. Similarly,619

an ApertisWidget passed to a footer property will be rendered below the body620

of the list widget. Using arbitrary widgets means the header’s appearance is621

easily customisable. Passing them to the list widget means that the list widget622

can set the widgets’ width to match that of the list.623

Applications can set either, both, or neither, of the header and footer properties.624

If both are set, both a header and a footer are rendered, and the application625

may use different widgets in each.626

Selections627

As with GtkListBox, it should be possible to select either one or many items628

in the list (see Item focus). The application author can decide what is the629

behaviour of the list in question using the “selection mode”. The values for the630

selection mode are none (no items can be selected), single (at most one item can631

be selected), and multiple (any number of items can be selected). A multiple632

selection example can be found in the Multiple selection section.633

The ListItem object has a read-write property for determining it can be selected634

or not. An example that sets this property can be found in the Non-selectable635

items section.636

The selection signals exposed by the list widget will be identical to those exposed637

by GtkListBox, namely item-selected when an item is focused, item-activated638

21

when the item is subsequently activated, and in the case of multiple selection,639

the selected-items-changed signal will give the user the full picture of the current640

items selected by the user, by being emitted every time the current selection641

changes, and passing an updated list of selected list items to potential callback642

functions.643

Item headers644

Item headers are widgets used to separate items into logical groups (for example,645

when showing tracks of an artist, they could be grouped in albums with the646

album name as the item header).647

Due to the requirement for lazy initialisation, the solution proposed by Gtk-648

ListBox cannot be adopted here, as it implies that all the list items need to be649

instantiated ahead of time.650

Our approach here is similar to the solution15 used with Android’s ListAdapter:651

as the adapter is decoupled from the data model, and returns the actors that652

should be placed at a given position in the list, it may also account for such653

headers, which should be returned as unselectable ListItems at specific positions654

in the adapter.655

We make no assumptions as to how implementations may choose to associate a656

selected list item with the data model: in the simple case, the index of a list item657

may be directly usable to access the backing object it represents, if the backing658

data is stored in an array, and no item header is inserted in the adapter.659

In other cases, where for example the backing data is stored in a database,660

or item headers are inserted and offset the indices of the following items, im-661

plementations may choose to store a reference to the backing object using662

g_object_set_qdata or an external mechanism such as a GHashTable.663

An example of item headers is shown in [the following section][Header items].664

Sticky item headers665

As required for Lazy list model, when the list widget is scrolled to a random666

point, items surrounding the viewport may not be created yet.667

It is proposed that a simple API be exposed to let application developers specify668

the sticky item at any point in the scrolling process, named list_set_sticky_func.669

The implementation will, upon scrolling the list widget, pass this function the670

index of the top-most visible item, and expect it to return the ListItem that671

should be stickied (or NULL).672

15http://stackoverflow.com/questions/18302494/how-to-add-section-separators-dividers-
to-a-listview

22

http://stackoverflow.com/questions/18302494/how-to-add-section-separators-dividers-to-a-listview
http://stackoverflow.com/questions/18302494/how-to-add-section-separators-dividers-to-a-listview
http://stackoverflow.com/questions/18302494/how-to-add-section-separators-dividers-to-a-listview

Blur effect673

Given the MxKineticScrollView container does the actual scrolling, it is the best674

place to implement the desired blur effect (seeblur effect). Additionally, im-675

plementing it in the container means it can be implemented once instead of in676

every widget that needs to have a blur effect.677

On-demand item resource loading678

By default, list items should assume they are not in view and should not perform679

expensive operations until they have been signalled by the list widget that they680

are in view (see On-demand item resource loading). For example, a music681

application might have a long list of albums and each item has the album cover682

showing. Instead of loading every single album cover when creating the list,683

each list item should use a default dummy picture in its place. When the user684

scrolls the list, revealing previously hidden items, the album cover should be685

loaded and the default dummy picture replaced with the newly loaded picture.686

The list widget should have a way of determining the item from given co-687

ordinates so that it can signal to said item when it comes into view after a688

scroll event. The list item object should only perform expensive operations689

when it has come into view, by reading and monitoring a property on itself.690

Once visible an item will not return to the not visible state.691

Scroll bubbles692

The bubble displayed when scrolling to indicate in which category the scroll is693

showing (seescroll bubbles) should be added to MxScrollBar as that is the widget694

that controls changing the scroll position.695

Roller subclass696

The roller widget should be implemented as a subclass of the list widget.697

The roller widget will implement the MxScrollable interface, setting appropriate698

increment values on its adjustments, in order to ensure the currently-focused699

row will always be aligned with the middle after scrolling.700

As the roller subclass will implement rollover, the elastic effect when reaching701

the bottom of the list will not be used.702

In addition, it will also, in its init method, use a ClutterEffect in order to703

render itself as a cylinder (or ideally, as a hexagonal prism16).704

16http://static.kidspot.com.au/cm_assets/32906/hexagonal-prism_346x210-jpg-
20151022203100.jpg~q75,dx330y198u1r1gg,c--.jpg

23

http://static.kidspot.com.au/cm_assets/32906/hexagonal-prism_346x210-jpg-20151022203100.jpg~q75,dx330y198u1r1gg,c--.jpg
http://static.kidspot.com.au/cm_assets/32906/hexagonal-prism_346x210-jpg-20151022203100.jpg~q75,dx330y198u1r1gg,c--.jpg
http://static.kidspot.com.au/cm_assets/32906/hexagonal-prism_346x210-jpg-20151022203100.jpg~q75,dx330y198u1r1gg,c--.jpg

Column layout705

By default, the list widget will display as many items as fit per row, given the706

list’s width and the configured item width. Properties will be provided for:707

• A row-spacing property, setting the blank space between adjacent rows.708

• A column-spacing property, setting the blank space between adjacent709

columns.710

• An item-width property, setting the width of all columns.711

• An item-height property, setting the height of all rows.712

Note that GtkFlowBox supports reflowing children of different sizes; in this design,713

we only consider children of equal sizes, which simplifies the API. It is equivalent714

to considering a GtkFlowBox with its homogeneous property set to true.715

So, for example, to display items in a single column (one item per row), set the716

item-width to equal the list’s width. To implement a grid layout where some717

items may be missing and gaps should be left for them, implement a custom718

row widget which displays its own children in a grid; and display one such row719

widget per row of the list.720

We suggest the default value for item-width is to track the list’s width, so that721

the list uses a single column unless otherwise specified.722

Focus animation723

A use-animations property will be exposed on the list items. Upon activation,724

an item with this property set to True will be animated to cover the whole width725

and height allocated to the list widget.726

Application developers may connect to the item-activated signal in order to727

update the contents of the item, as shown in Item activation.728

Once the set of possible and valuable animations has become clearer, API may be729

exposed to give more control to system integrators and application developers.730

Item launching731

In the roller subclass, the item-activated signal should only be emitted for actors732

in the currently focused row. This will ensure that only items that were scrolled733

to can be activated.734

24

API diagram735

736

Signals are shown with a hash beforehand (for example, #item-activated), with737

arguments listed afterwards. Properties are shown with a plus sign beforehand738

and without getters or setters (get_model(), set_model()) for brevity.739

Example API usage740

Basic usage741

The following example creates a model, creates item actors for each artist avail-742

able on the system, and adds them to the model. The exact API is purely an743

example but the approach to the API is to note.744

As a simple example, this avoids creating a separate adapter and model, and745

instead creates a model which contains the list row widgets. In more complex746

examples, where data from the model is being used by multiple list widgets, the747

model and adapter are separate, and the entries in the model are not necessarily748

widget objects. See [Generic adapter] for such an example.749

{{ ../examples/sample-list-api-usage-basic.c }}750

The object created by create_sample_artist_item is an instance of ClutterActor751

(or an instance of a subclass) which defines how the item will display in the list.752

In that case, it is as simple as packing in a ClutterText to display the name of the753

artist as a string. More likely it would use a ClutterBoxLayout layout manager754

to pack different ClutterActors into a horizontal line showing properties of the755

artist.756

Item activation757

The following example creates a list widget using the function defined in the758

previous section and connects to the item-activated signal to change the list759

item actor.760

{{ ../examples/sample-list-api-usage-item-activated.c }}761

25

Filtering762

The following example shows how to filter the list store bound to the list widget763

created using the function implemented in Basic usage to only display items764

with a specific property.765

{{ ../examples/sample-list-api-usage-filtering.c }}766

Multiple selection767

The following example sets the selection mode to allow multiple items to be768

simultaneously selected.769

{{ ../examples/sample-list-api-usage-selection.c }}770

Non-selectable items771

The following example makes half the items in a list impossible to select.772

{{ ../examples/sample-list-api-usage-non-selectable-items.c }}773

Header items774

The following example adds alphabetical header items to the list.775

{{ ../examples/sample-list-api-usage-header-items.c }}776

On-demand item resource loading777

The following example shows how on-demand item resource loading could be778

implemented, using the model created in the first listing:779

{{ ../examples/sample-list-api-usage-resource-loading.c }}780

Generic adapter781

The following example shows how developers may take advantage of the pro-782

posed generic adapter.783

{{ ../examples/sample-list-adapter-api-usage.c }}784

Alternative list adapter785

Authors of applications do not necessarily need to use a GListStore as their786

adapter class. Instead they can implement the GListModel interface, and pass it787

as the adapter for the list widget.788

In the following example, we define and implement an adapter to optimise both789

initialisation performance by creating MyArtistItems only when required, and790

memory usage by letting the List widget assume ownership of the created items.791

{{ ../examples/alternative_list_model.c }}792

26

Requirements793

This design fulfils the following requirements:794

-common api1 — the list widget and roller widget have the same API and any795

roller-specific roller API is in its own class.796

-mvc separation1 — GListModel is used as an adapter to the backing data, which797

storage format is not imposed to the user. The list widget and item widgets are798

separate objects.799

-data backend agnosticity1 — Applications provide list items through an800

adapter, no requirement is made as to the storage format.801

-kinetic scrolling1 — use MxKineticScrollView.802

• Elastic effect — use MxKineticScrollView.803

• Item focus — list items can be selected (Selections).804

-roller focus handling1 — this roller-specific selecting behaviour can be added805

to the roller’s class.806

-animations1 — use MxKineticScrollView.807

-item launching1 — the item-activated signal on the list widget will signal when808

an item is activated.809

-header and footer1 — ApertisWidgets can be set as header or footer header and810

footer2).811

-roller rollover1 — this roller-specific rollover behaviour can be added to the812

roller’s class.813

-widget size1 — use ClutterLayoutManager and the ClutterActor properties widget814

size2).815

-consistent focus1 — the API asserts a consistent focus and ensures the imple-816

mentation behaves when the model changes.817

-focus animation1 — items are ClutterActors which can animate using regular818

Clutter API.819

-mutable list1 — use GListStore.820

-ui customisation1 — subclass ApertisWidget and use the GtkStyleProviders.821

-blur effect1 — add a motion-blur property to MxKineticScrollView and use that822

blur effect2).823

-scrollbar1 — use the scroll-visibility property on the MxScrollView container.824

-hardware scroll1 — use the adjustment on the list widget to scroll down a page,825

and use the appropriate function to move the selection on.826

27

• On-demand item resource loading1 — ensure list widget can look up the827

item based on co-ordinates, and add a property to the list item object to828

denote whether it’s in view, which the list widget updates.829

-scroll bubbles1 — add support for overlay actors to MxScrollBar.830

-item headers1 — Added as regular ListItems in the adapter, a list_set_sticky_func831

API is exposed.832

• Lazy list model — see Alternative list adapter, for an example of how833

application developers may implement their own model.834

• Flow layout — The number of columns is calculated by dividing the list835

width by the specified item width. Padding between the resulting columns836

and rows may be specified using row-spacing and column-spacing properties.837

Summary of recommendations838

As discussed in the above sections, we recommend:839

• Write a list widget partially based on GtkListBox, which subclasses Aper-840

tisWidget.841

• Write a list item widget partially based on GtkListBoxRow which also sub-842

classes ApertisWidget.843

• Add a motion-blur property to MxKineticScrollView.844

• Expose a sticky item callback registration method.845

• Add support for overlay actors to MxScrollBar.846

• Write a Roller widget as a list widget subclass.847

• Ensure new widgets are easily customisable using CSS.848

• Add demo programs for the new widgets.849

• Define unit tests to run manually using the example programs to check850

the widgets work correctly.851

28

Appendix852

Existing roller design853

854

29

855

30

	List design
	Terminology and concepts
	Vehicle
	System
	User
	Widget
	User interface
	Roller
	Application author
	Variant

	Use cases
	Common API
	MVC separation
	Data backend agnosticity
	Kinetic scrolling
	Roller focus handling
	Animations
	Item launching
	Header and footer
	Roller rollover
	Widget size
	Click activation
	Consistent focus
	Focus animation
	Mutable list
	UI customisation
	Blur effect
	Scrollbar
	Hardware scroll
	On-demand item resource loading
	Scroll bubbles
	Item headers
	List with tens of thousands of items
	Flow layout
	Concurrent presentation of the same model in different list widgets

	Non-use cases
	Tree views
	List widget without a backing model
	Sticky header and footer

	Requirements
	Common API
	MVC separation
	Data backend agnosticity
	Kinetic scrolling
	Item focus
	Roller focus handling
	Animations
	Item launching
	Header and footer
	Roller rollover
	Widget size
	Consistent focus
	Focus animation
	Mutable list
	UI customisation
	Blur effect
	Scrollbar
	Hardware scroll
	On-demand item resource loading
	Scroll bubbles
	Item headers
	Lazy list model
	Flow layout
	Reusable model

	Approach
	Adapter interface
	GtkListBox
	GtkFlowBox
	Widget size
	Adapter/Model implementation
	Decoupled model
	Lazy object creation
	High-level helpers
	UI customisation
	Sorting
	Filtering
	Header and footer
	Selections
	Item headers
	Sticky item headers
	Blur effect
	On-demand item resource loading
	Scroll bubbles
	Roller subclass
	Column layout
	Focus animation
	Item launching
	API diagram

	Example API usage
	Basic usage
	Item activation
	Filtering
	Multiple selection
	Non-selectable items
	Header items
	On-demand item resource loading
	Generic adapter
	Alternative list adapter

	Requirements
	Summary of recommendations
	Appendix
	Existing roller design

