
Infrastructure maintenance automation

Contents1

Infrastructure maintenance automation 22

Introduction . 23

Goals . 24

Data-driven . 25

Git-controlled . 26

Idempotent . 27

Scalable . 28

Single source of truth . 29

Reproducible . 310

Explicit . 311

Basic approach . 312

Add test mode for current branching scripts 313

Improve coverage of current branching scripts 314

Longer term approach . 315

Centralized metadata . 416

Per-repository branching operations 517

Implementation . 518

Add test mode for current branching scripts 519

Improve coverage of current branching scripts 520

Centralized metadata . 521

Per-repository branching operations 722

Infrastructure maintenance automation23

Introduction24

This document describes the goals and the approaches for automating the man-25

agement of the infrastructure used by Apertis. It will focus in particular on26

release branching since the new release flow implies that Apertis will need to go27

through that process two or three times more than in the past on each quarter.28

Goals29

Data-driven30

Separating the description of the desired infratructure state from the tools to31

apply it nicely separates the two concerns: in most cases the tools won’t need32

to be updated during branching, only the desired infrastructure state changes.33

Git-controlled34

Basing everything on configuration stored in a Git repository has several advan-35

tages:36

• all the changes are tracked over time37

2

• the standard Apertis workflows based on GitLab merge requests can be38

used to review changes39

• fine access controls can be configured via GitLab40

Idempotent41

Every tool should compare the current state with the desired one and not pro-42

duce errors when they already match. Administrator should be able to run the43

tools at any time, multiple times, without any ill effect.44

Scalable45

The Apertis infrastructure is composed of enough services that a centralized list46

of things to update when branching is doomed to be outdated every quarter.47

Single source of truth48

The duplication of the same information between modules should be minimized,49

such that updating the single source of truth automatically produces effects on50

the depending modules.51

Reproducible52

Running the tools in a standardized, easily reproducible environment enables53

all the administrators to easily deploy changes without any special setup.54

Explicit55

All the needed information should be explicitly encoded in metadata repository.56

The tools using it should strive to not make any assumption on the data and57

derive more information out of it. This is another facet of ensuring that the58

metadata repository remains the single source of truth.59

Basic approach60

The basic approach aims at improving the current branching scripts to make61

them easier to test by developers, enabling more people to work on them, and62

to extend them to fully handle the complete branching process.63

Add test mode for current branching scripts64

At the moment the quarterly release branching is done through a set of scripts165

that get invoked manually by one the Apertis infrastructure team member from66

their machine.67

They act directly on the live services using the caller’s accounts.68

1https://gitlab.apertis.org/infrastructure/apertis-infrastructure/tree/apertis/v2020pre/
release-scripts

3

https://gitlab.apertis.org/infrastructure/apertis-infrastructure/tree/apertis/v2020pre/release-scripts
https://gitlab.apertis.org/infrastructure/apertis-infrastructure/tree/apertis/v2020pre/release-scripts
https://gitlab.apertis.org/infrastructure/apertis-infrastructure/tree/apertis/v2020pre/release-scripts

The first step for improving the branching automation is to add a “dry-run”69

mode to all the current release scripts to let developers and admin run them70

Improve coverage of current branching scripts71

The scripts currently in charge of reducing the manual intervention during the72

branching process do not cover all services and repositories which are part of73

Apertis.74

Once the “dry-run” mode is in place, new steps need to be added to the branch-75

ing scripts to cover the missing services and repositories.76

Longer term approach77

Larger refactorings are needed to align the current infrastructure to the goals78

previously described.79

The following sections describe the steps needed to further improve the infras-80

tructure maintenance to make it more robust and require less effort to manage.81

Centralized metadata82

A new git repository contains the principal metadata about the whole Apertis83

infrastructure describing:84

• the currently active release branches85

– e.g. v2020pre, v2019, etc.86

• their phase in the release lifecyle87

– e.g. development, preview, stable88

• their release status89

– e.g. frozen, release-candidate, released90

• the release from which they get branched from:91

– e.g. 2019pre for both v2019 and v2020dev092

• the matching git branch name93

– e.g. apertis/v201994

• the APT components they ship95

– e.g. target, development, sdk, hmi96

• etc.97

This provides a git-controlled single source of truth: tools are updated to fetch98

the information they need from this repository.99

For instance, the creation of OBS projects should be handled by a tool that:100

• fetches the above YAML101

• checks the current OBS configuration102

• computes the changes needed compared to the desired state, if any103

• applies the changes, if any, to align the actual state to the desired state,104

providing an idempotent solution105

4

• runs from a GitLab pipeline, providing a reproducible environment that106

can be either triggered by changes in the main data repository or manually107

The current infrastructure encodes a lot of information about the releases in108

several places: tools should be changed to fetch such information on the fly from109

the main data repository or GitLab pipelines should be configured to monitor110

the main data repository and automatically apply changes accordingly.111

For instance, the LAVA job templates encode the branch name of the release112

they track in multiple places. Either the templates can be enhanced to fetch113

the information on the fly from the main data repository, or a pipeline should114

be configured in a dedicated branch in the repository to monitor the main data115

repository and branch/update the repository accordingly.116

The change compared to the current approach is to minimize the amount of117

information that needs to be branched and distribute the branching logic closer118

to the entity to be branched. This is meant to avoid the recurring issues where119

the current centralized branching scripts failed to branch things properly or did120

not include new components to be branched at all.121

Per-repository branching operations122

For most repositories it is sufficient to add a new git ref when branching for a123

new release. In particular, nearly all the the packaging ones do not need any124

change to the repository contents and creating a new ref is enough.125

Other repositories need instead some changes to be applied to the contents once126

a new release branch is created. A common reason is that the release name is127

encoded in some file, which means that the file needs to be updated and the128

change needs to be committed and pushed.129

By making branching self-contained in the repositories, moving and renaming130

them no longer cause breakage. It also gives full control over the branching131

of a repository to the people managing that repository, rather than those who132

manage the centralized repository. This can be especially useful for components133

not managed by the core Apertis team, owned instead by product-specific teams.134

In general, keeping the branching operation in the same place as the rest of the135

contents helps in keeping them coeherent and makes testing easier.136

Implementation137

Add test mode for current branching scripts138

Setting the NOACT=y environment variable causes the branching scripts to run in139

test mode, without actually launching the branching commands.140

Improve coverage of current branching scripts141

New actions need to be taken when branching a new release.142

5

This is a non exhaustive list:143

• branch LAVA job templates;144

• update the configuration on GitLab repositories to create the new release145

branch, make it the default, etc.;146

• create the relevant :snapshots repositories on OBS;147

• add support for the security, updates and backports repositories when148

branching stable releases.149

Centralized metadata150

The centralized information can be modeled as YAML, for instance:151

6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

.common_components: &common_components

- target

- development

- sdk

- hmi

projects:

apertis:

releases:

v2019:

lifecycle: stable

status: released

branched-from: v2019pre

branch-name: apertis/v2019

upstream: debian/buster

obs-build-suffix: v2019.0

suites:

v2019:

obs-pattern: '$project:$release:$component'

components: *common_components

v2019-updates:

obs-pattern: '$project:$release:updates:$component'

components: *common_components

v2019-security:

obs-pattern: '$project:$release:security:$component'

components: *common_components

infrastructure-packages:

obs: apertis:infrastructure:v2019

suite: infrastructure-v2019

components:

- buster

v2020dev0:

lifecycle: development

status: frozen

branched-from: v2019pre

branch-name: apertis/v2020dev0

upstream: debian/buster

obs-build-suffix: v2020dev0

suites:

v2020dev0:

obs-pattern: '$project:$release:$component'

components: *common_components

infrastructure-packages:

obs: apertis:infrastructure:v2019

suite: infrastructure-v2019

components:

- buster

7

Per-repository branching operations152

A release-branching step should be added to the GitLab CI pipeline YAML in153

the repository with the purpose of ensuring that the release-specific contents154

match the branch name.155

GitLab does not provide any way to execute an action only when a new ref156

is created so the best strategy is to ensure that the release-branching script is157

idempotent and gets run when changes land to any apertis/* refs: if no changes158

are detected the step succeeds with no further operations, otherwise it commit159

and push the changes automatically, or it submits a MR to be reviewed before160

landing the changes.161

8

	Infrastructure maintenance automation
	Introduction
	Goals
	Data-driven
	Git-controlled
	Idempotent
	Scalable
	Single source of truth
	Reproducible
	Explicit

	Basic approach
	Add test mode for current branching scripts
	Improve coverage of current branching scripts

	Longer term approach
	Centralized metadata
	Per-repository branching operations

	Implementation
	Add test mode for current branching scripts
	Improve coverage of current branching scripts
	Centralized metadata
	Per-repository branching operations

