
Web Runtime

Contents1

Definitions 22

Overview 23

Anatomy of a web app . 34

User interface . 35

Integration with Apertis App Framework 36

App Manager (Canterbury) . 37

Hardkey integration (Canterbury / Compositor) 38

Inter-App integration (Didcot) . 49

Security 410

Potential API 511

WebRuntimeApplication (GApplication subclass) 512

webruntime_init - WebExtension . 513

Definitions14

• web runtime a set of rules, supporting libraries, App Framework and15

SDK integration to allow development and integration of web and hybrid16

apps targeting the Apertis system17

• web app an application using web technologies such as HTML, CSS and18

JavaScript, integrated on the system through the web runtime19

• native app an application targeting the Apertis system using the Apertis20

UI toolkit for its user interface, developed in either C or one of the other21

supported languages such as JavaScript22

• hybrid app a native app that includes a web page as a piece of its user23

interface; it may use the web runtime infrastructure but not necessarily24

does25

Overview26

The web runtime will be provided through a library that mediates the interaction27

between the WebView and the system, and a launcher. There will be two ways28

of using the web runtime: handing over the whole task to it by using the shared29

launcher or by picking and choosing from the library APIs. The simple, hand-30

over mode will be the one adopted by pure web apps (i.e. not hybrid ones) which31

do not need a custom launcher. It will use the shared launcher executable to32

start the web app. The web runtime (library and shared launcher) will be a33

part of the system image, alongside other frameworks such as the App Manager.34

The web runtime will handle the window and manage any additional WebViews35

the application ends up using, providing appropriate stacking.36

2

For hybrid apps, a custom launcher will be necessary, since more than just the37

web runtime is required. In that case, the web runtime library can still be useful38

to provide integration with the JavaScript bindings for the system APIs or to39

help manage additional views. The hybrid app’s author will need to decide40

which functions to delegate and which to build based on the requirements, the41

web runtime library needs to be flexible to cover these use cases.42

An important note about the web app concept is in order to avoid confusion.43

Some platforms like Gnome and iOS support a way of turning regular web sites44

into what they call a web app: an icon for launching a separate instance of the45

browser that loads that web site as if it were a regular app. This form of web46

app does not provide any form of special interaction with system APIs and is47

not the kind of app discussed in this document.48

Anatomy of a web app49

Web apps will be very much like regular ones. Their bundles will contain any50

HTML, image, CSS and JS files they require for running, but they may also use51

remote resources if it makes sense.52

The web runtime will ensure any caching and data storage such as the databases53

for cookies, HTTP cache, and HTML storage APIs will live under the applica-54

tion’s storage area. More specifically, data such as those of cookies and HTML55

storage APIs will live under the Application User type while HTTP cache will56

live under the Cache type, see the Data Storage section of the Applications57

design document.58

User interface59

There will be access to the native UI toolkit through the JavaScript API, but60

any interface created using it cannot be mixed into the web page. Being able to61

access those APIs may be useful for using standard dialogs, for instance. Unless62

the developer is writing a hybrid app, and thus rolling their own launcher, any63

native UI toolkit usage will only be possible on a separate window.64

In the future a web framework may be provided to help create interfaces similar65

to the ones available natively. For now, the app developer is fully responsible66

for the look & feel of the web app.67

Integration with Apertis App Framework68

As with native apps, most interactions with the App Framework are to be69

done by the apps themselves, but there may be some cases where the web70

runtime itself needs to handle or mediate that integration. This section lists71

and addresses those cases.72

3

App Manager (Canterbury)73

Canterbury is a service that handles installation and starting applications, along74

with centralizing several App Framework features (some of which may end up75

being split in redesigns, though). The current proof of concept implementation76

of a web runtime includes handling of app state and hardkeys.77

The app state handling currently does nothing in web runtime mode and is78

likely not relevant for the web runtime - the web app can connect to the service79

and do its own handling should it decide it is important.80

Hardkey integration (Canterbury / Compositor)81

Hardware keys handling is currently in a state of flux and is likely to move from82

Caterbury to the compositor, but the basic mechanism to register for notification83

is probably going to remain the same.84

In the current proof of concept runtime, the hardkey handling connects to the85

back feature of the view, similar to the back button in regular browsers. While86

that may make sense for apps that use a single view and rely on navigation87

history alone, it may make more sense to let the app decide what to do and88

default to closing the top-most view if the app does not handle it. The same89

goes for other hardware keys.90

To achieve that and avoid the problem of having to register twice for getting91

the button press signals, the runtime will be the sole responsible for registering92

with the relevant service for this. It will then relay hardware key presses to93

JavaScript callbacks provided by the web app. In the event the web app does94

not provide a callback or does not handle it (i.e. returns false), the runtime may95

adopt a default behaviour, such as closing the top-most view for a back press,96

or ignore it.97

Inter-App integration (Didcot)98

Applications can tell the system to launch other applications by using the con-99

tent hand-over service (Didcot)1. The API used to communicate with the ser-100

vice will be available to the JavaScript context through the bindings provided101

by seed, but regular links in web apps can use the same schemes used by the102

content hand-over mechanism. The WebView provided by the web runtime li-103

brary will automatically handle navigation to those schemes and call the content104

hand-over API.105

Security106

Web apps security should not be that different from native apps. The same107

firewall rules may apply, as well as resource limits and AppArmor rules. While108

1https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/

4

https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/

native and hybrid apps can easily be contained by their own AppArmor profile,109

pure web apps will use a shared binary and thus need a different solution.110

The AppArmor API provides a change_profile function that allows specifying111

a different profile to switch to. Web apps will follow the convention of prefixing112

their profile names with *web_*, so that the launcher can be allowed to switch113

exclusively to web app profiles by means of a wildcard permission. The name114

of the profile will be the *web_* prefix plus the reverse domain-name notation115

used in the app’s manifest and install path.116

As described in the overview, being an web app does not necessarily mean that117

its data comes from remote web servers. Most apps should actually ship with118

local HTML, CSS and JS files for rendering and controlling their UIs, only using119

remote data like any native app would.120

Notice however that this is not a rule, web apps may also come in the form of121

simple shells for content downloaded from a remote web server, in which case it122

is probably advisable that the system API made available to the app be limited.123

For this reason, the JavaScript bindings will make it possible to use a blacklist124

or a whitelist to describe which modules are made or not available to a given125

app.126

It is advisable that no bindings are made available at all for remote content not127

directly controlled by the web app publisher. This needs to be screened for in128

the app store approval process.129

Potential API130

WebRuntimeApplication (GApplication subclass)131

Manages WebViews, when the main WebView is closed it will quit the applica-132

tion. Connects to the back hardkey, tells web app about it being pressed and133

handles it if the app does not.134

webruntime_init - WebExtension135

In WebKit1, a single process was used for the whole browser, thus the Web-136

View had control over the JavaScript context. With WebKit2 that is no longer137

the case, since the WebView lives in the UI process and everything web is in138

the Web process, including JS execution. WebKit2 provides a facility called139

WebExtension. The Web process loads any loadable modules provided by the140

application and allows them to interact with Web process functionality such as141

DOM bindings and JS execution.142

The Web Runtime will provide a loadable web extension which will enable the143

following:144

• makes GObject bindings available to the page’s JavaScript context145

5

• handles requests for opening new windows/views and tells WebRun-146

timeApplication about them147

• handles navigation requests for non-web, non-file schemes and hands them148

to Didcot149

A few JavaScript methods will also be made available by the WebRuntime itself150

through a globally available ApertisWebRuntime object:151

• popView(): will remove the top-most view from the stack, destroying the152

related WebView153

• onBackPress(): the web app should provide this method by adding it154

to the ApertisWebRuntime object; if it exists on the top-most view, the155

runtime will call it whenever the back key is pressed, the boolean return156

value tells the runtime whether the press has been handled157

• onFavoritesPress(): like onBackPress, called for the favorites button158

• on…Press(): all hardware keys will have equivalent callbacks159

6

	Definitions
	Overview
	Anatomy of a web app
	User interface

	Integration with Apertis App Framework
	App Manager (Canterbury)
	Hardkey integration (Canterbury / Compositor)
	Inter-App integration (Didcot)

	Security
	Potential API
	WebRuntimeApplication (GApplication subclass)
	webruntime_init - WebExtension

