
License-compliant TLS stack for Apertis targets

Contents1

Overview of the existing situation 22

Issue 33

Goals and requirements 44

Alternative SSL solutions 55

BoringSSL . 56

LibreSSL . 57

mbed TLS . 68

MesaLink . 69

NSS . 610

wolfSSL . 711

Possible solutions 712

Single stack solutions . 713

Standardize on GnuTLS, replace use of problematic dependencies 714

Standardize on an OpenSSL-compatible library 815

Wrappering a non-GnuTLS/OpenSSL-compatible library to pro-16

vide both APIs . 817

Multi-stack solutions . 818

Replace OpenSSL with compatible alternative 919

Consider OpenSSL to not pose a licensing issue 920

Recommendations 1021

Appendix 1322

Details of TLS library usage in target 1323

Usage of libcurl . 1524

Usage of GMP . 1625

The Apertis distribution provides both a development environment for electronic26

devices as well as a software stack to be used on them. In line with this goal,27

the Apertis project strives to provide software components that, where there is28

intent that they form part of the software stack on the devices themselves, are29

free from licensing constraints that may make it unsuitable in certain use cases.30

An example is software licensed under the terms of the GNU GPL-31 (General31

Public License) or LGPL-32 (Lesser General Public License) which are known32

to present a problem as they sometimes conflict with regulatory requirements333

and thus Apertis will take measures to avoid such packages being provided as34

1https://www.gnu.org/licenses/gpl-3.0.en.html
2https://www.gnu.org/licenses/lgpl-3.0.en.html
3https://sjoerd.pages.apertis.org/apertis-website/policies/license-expectations/#licensing-

constraints

2

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://sjoerd.pages.apertis.org/apertis-website/policies/license-expectations/#licensing-constraints
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://sjoerd.pages.apertis.org/apertis-website/policies/license-expectations/#licensing-constraints
https://sjoerd.pages.apertis.org/apertis-website/policies/license-expectations/#licensing-constraints

part of the “target” package repositories4.35

Providing suitable and compatible Transport Layer Security5 (TLS) libraries has36

already required some measures to be taken to meet the licensing expectations37

of the Apertis project, but changes in the licensing of newer versions from the38

upstream projects now requires a longer term strategy to be considered and39

implemented.40

Overview of the existing situation41

The “target” section of Apertis ships a variety of packages which use TLS from42

a provided library. There are a number of software libraries that provide com-43

peting TLS implementations and which are provided under various licensing44

terms. However, these projects do not always provide the same programming45

interfaces, thus do not provide a drop in replacement for each other. Whilst46

some users of TLS libraries may provide some level of abstraction to support47

more than one TLS library, others may support only one and thus Apertis48

currently provides GnuTLS6, OpenSSL7 and NSS8.49

• GnuTLS: Apertis currently provides GnuTLS version 3.4.10. This is50

an approximately four-year-old version of GnuTLS as shipped in Ubuntu51

Xenial and thus is currently supported by Ubuntu and is expected to52

be until 2022. GnuTLS is used directly or indirectly via libcurl in just53

more than a dozen packages in target. Debian Buster, the current main54

upstream of Apertis, includes a newer version of GnuTLS (currently 3.6.7)55

though upgrading to this has already been avoided due to licensing issues56

that will be discussed below.57

• OpenSSL: Apertis currently provides OpenSSL version 1.1.1. This is58

a relatively recent release in the 1.1.1 series and is packaged as part of59

Debian Buster. The 1.1.1 series is currently supported9 as an LTS release60

by the OpenSSL project until September 2023. Support for Debian Buster61

is expected10 until June 2024.62

• NSS: Apertis currently provides NSS version 3.42.1. This version is ap-63

proximately a year and a half old, and is packaged as part of Debian64

Buster. As with OpenSSL, support for Debian Buster is expected until65

June 2024.66

Some of the packages requiring TLS support only support one of the currently67

4https://sjoerd.pages.apertis.org/apertis-website/policies/license-expectations/#apertis-
repository-component-specific-rules

5https://en.wikipedia.org/wiki/Transport_Layer_Security
6https://www.gnutls.org/
7https://www.openssl.org/
8https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
9https://www.openssl.org/policies/releasestrat.html

10https://wiki.debian.org/LTS

3

https://sjoerd.pages.apertis.org/apertis-website/policies/license-expectations/#apertis-repository-component-specific-rules
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.gnutls.org/
https://www.openssl.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://www.openssl.org/policies/releasestrat.html
https://wiki.debian.org/LTS
https://sjoerd.pages.apertis.org/apertis-website/policies/license-expectations/#apertis-repository-component-specific-rules
https://sjoerd.pages.apertis.org/apertis-website/policies/license-expectations/#apertis-repository-component-specific-rules
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.gnutls.org/
https://www.openssl.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://www.openssl.org/policies/releasestrat.html
https://wiki.debian.org/LTS

provided TLS implementations, often due to licensing compatibility. Other68

packages, most notably libraries, support multiple TLS backends, frequently69

including both GnuTLS and OpenSSL as options. For more information, see70

the detailed analysis in the Appendix.71

Issue72

The TLS libraries used in Apertis today are currently supported, though this73

will not remain the case indefinitely, with Ubuntu dropping support for the74

currently used GnuTLS in 2022, NSS and OpenSSL 1.1 losing support in 2024.75

Future releases of Apertis would be expected to be based on newer versions of76

Debian (as covered in the Apertis Release Flow11. As could be expected, newer77

versions of Debian have integrated newer versions of these TLS libraries. Whilst78

upgrading to newer versions of NSS does not appear to present any issues, the79

GnuTLS or OpenSSL may present issues for Apertis:80

• GnuTLS: Whilst GnuTLS is licensed under the LGPL-2.112, it uses Net-81

tle13 and GMP14. Newer versions of both of these dependencies are now82

licensed as dual GPL-2 and LGPL-3, rather than LGPL-2.1.83

To avoid including GnuTLS under LGPL-3 terms, should Apertis integrate84

a newer version it would need to be utilized under the GPL-2 terms. This85

would result in the binary GnuTLS library effectively being used under the86

terms of the GPL-2 rather than LGPL-2.1. This would restrict Apertis87

users from using this Apertis provided TLS implementation either directly88

or indirectly from any non-GPL-2 compatible applications they wish to89

integrate into their systems, for example in proprietary applications, where90

it would have the effect of requiring the app to also be GPL-2 licensed.91

• OpenSSL: The currently used version of OpenSSL is licensed under a92

custom GPL-incompatible license. OpenSSL 3.0 (the next major version93

of OpenSSL) will be licensed under the Apache 2.015 license, which is94

compatible with the GPL-3, but not GPL-2. This means that GPL-295

tools like tumbler, connman, apt or systemd-journal-remote cannot use the96

newer versions of OpenSSL without effectively becoming GPL-3 licensed or97

through these upstream projects applying a license exceptions (for example98

as OpenVPN16 has). The OpenSSL project do not seem to hold a strong99

opinion on the compatibility, though suggest17 either not using the GPL100

or applying an exception should you wish to gain some legal certainty.101

11https://sjoerd.pages.apertis.org/apertis-website/policies/release-flow/#apertis-release-
flow

12https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
13https://www.lysator.liu.se/~nisse/nettle/nettle.html
14https://gmplib.org/
15https://www.apache.org/licenses/LICENSE-2.0
16https://spdx.org/licenses/openvpn-openssl-exception.html
17https://www.openssl.org/docs/faq.html#LEGAL2

4

https://sjoerd.pages.apertis.org/apertis-website/policies/release-flow/#apertis-release-flow
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.lysator.liu.se/~nisse/nettle/nettle.html
https://www.lysator.liu.se/~nisse/nettle/nettle.html
https://www.lysator.liu.se/~nisse/nettle/nettle.html
https://gmplib.org/
https://www.apache.org/licenses/LICENSE-2.0
https://spdx.org/licenses/openvpn-openssl-exception.html
https://www.openssl.org/docs/faq.html#LEGAL2
https://sjoerd.pages.apertis.org/apertis-website/policies/release-flow/#apertis-release-flow
https://sjoerd.pages.apertis.org/apertis-website/policies/release-flow/#apertis-release-flow
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.lysator.liu.se/~nisse/nettle/nettle.html
https://gmplib.org/
https://www.apache.org/licenses/LICENSE-2.0
https://spdx.org/licenses/openvpn-openssl-exception.html
https://www.openssl.org/docs/faq.html#LEGAL2

Given the security sensitive nature of the TLS stack, utilizing unmaintained soft-102

ware here would be best avoided. Putting maintenance aside, these versions of103

their respective TLS implementations may not be gaining support for any new104

ciphers and TLS protocol versions, which will severely limit their usefulness as105

time progresses. As well as not gaining newer protocol versions, the libraries106

may not be updated to reflect the frequently changing recommendations regard-107

ing minimal protocol versions18 that should be supported, which may result in108

issues when attempting to access sites following the “Modern” recommendation.109

Additionally, it is likely that newer versions of the packages utilizing these TLS110

implementations will begin to require functionality added to newer versions of111

the TLS libraries thus reducing the ability of Apertis to upgrade to these too.112

It is therefore imperative that a way forward is agreed upon that is acceptable113

to Apertis’ stakeholders.114

Goals and requirements115

The broad aim of this proposal is to reach a state where Apertis is able to116

provide TLS functionality not just for the packages contained within its own117

repositories, but to support applications added by those utilizing Apertis as118

well.119

• Requirement: TLS implementation does not require code covered by120

licenses that are incompatible with the target repositories rules121

• Requirement: TLS implementation is licensed under terms that does122

not preclude its use from existing target applications123

• Requirement: TLS implementation is licensed under terms that does124

not preclude its use from users proprietary applications125

Ideally the solution would also enable Apertis to standardize on a single TLS126

stack. Each TLS implementation has its own quirks, such as different ways to127

manage certificates. Standardizing on a single solution would make the platform128

more coherent and efficient, reducing maintenance by only needing to track129

security issues and deploy updates for a single implementation. While this may130

not be viable for the wide range of software provided by Apertis across all131

repositories, it may be possible to standardize on a single stack for the target132

components. If standardizing on a single TLS implementation would require133

excessive effort, an alternative solution would be to have multiple TLS libraries134

(for example, using GnuTLS only for programs that don’t support OpenSSL),135

but to designate one as the recommended solution for use in products.136

• Preference: Single TLS stack used for components in target.137

18https://wiki.mozilla.org/Security/Server_Side_TLS

5

https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS

Alternative SSL solutions138

In addition to GnuTLS and OpenSSL, there are a number of other TLS libraries139

available, including:140

BoringSSL141

BoringSSL19 is a fork of OpenSSL being actively maintained by Google for142

internal use. It currently provides an OpenSSL based API, but explicitly states143

it comes with no API-ABI guarantees, users should expect API changes as144

deemed suitable for Googles internal users. BoringSSL maintains the current145

licensing state, though as it’s developed the amount of OpenSSL-licensed code146

is reduced, in part through the removal of legacy code. Googles additions are147

currently provided under the ISC license.148

LibreSSL149

LibreSSL20 is maintained by OpenBSD, it is a fork of OpenSSL v1.0.1, made150

as a result of the poor maintenance of OpenSSL at the time (but which has151

since improved). It aims to modernize the code base, improve security, and152

apply best practice development process. As a result of these goals a lot of153

legacy code has been removed. LibreSSL maintains the current licensing state,154

with new additions provided under the ISC license. LibreSSL does not appear155

to have gained significant adoption which will limit the developer attention it156

receives.157

mbed TLS158

mbed TLS21 is a TLS implementation with a small footprint, targeting embed-159

ded systems. The mbed TLS library does not provide either the OpenSSL or160

GnuTLS API, it provides an API at a slightly lower level, requiring more man-161

ual operations22 and thus wrappers or porting effort would be required to use162

it. It is available in two versions, one distributed under the Apache-2.0 license163

and another separately licensed as GPL-2+, though it’s understood that it will164

drop the GPL-2+ license in the next major release.165

MesaLink166

MesaLink23 is an OpenSSL-compatible TLS library written in Rust24. With167

it being implemented in Rust it can be assumed to have some resilience due168

19https://boringssl.googlesource.com/boringssl/
20https://www.libressl.org/
21https://tls.mbed.org/
22https://github.com/warmcat/libwebsockets/commit/9da75727858b4d60750cfcefc1673f6783e8719d
23https://mesalink.io/
24https://www.rust-lang.org/

6

https://boringssl.googlesource.com/boringssl/
https://www.libressl.org/
https://tls.mbed.org/
https://github.com/warmcat/libwebsockets/commit/9da75727858b4d60750cfcefc1673f6783e8719d
https://github.com/warmcat/libwebsockets/commit/9da75727858b4d60750cfcefc1673f6783e8719d
https://github.com/warmcat/libwebsockets/commit/9da75727858b4d60750cfcefc1673f6783e8719d
https://mesalink.io/
https://www.rust-lang.org/
https://boringssl.googlesource.com/boringssl/
https://www.libressl.org/
https://tls.mbed.org/
https://github.com/warmcat/libwebsockets/commit/9da75727858b4d60750cfcefc1673f6783e8719d
https://mesalink.io/
https://www.rust-lang.org/

to this languages focus on safety and MesaLink recently underwent a third-169

party security audit with excellent results25. However, MesaLink only supports170

modern TLS standards and thus connectivity with older and less secure servers171

may be impacted. MesaLink is licensed as BSD-3-Clause, however it uses a172

large number of third party libraries, licensed as follows:173

• base64: Apache-2.0/MIT174

• bitflags: Apache-2.0/MIT175

• env_logger: Apache-2.0/MIT176

• enum_to_u8_slice_derive: BSD-3-Clause177

• libc: Apache-2.0/MIT178

• parking_lot: Apache-2.0/MIT179

• ring: Based on BoringSSL and thus has parts licensed under the ISC and180

original OpenSSL licensing181

• rustls: Apache-2.0/ISC/MIT182

• sct: Apache-2.0/ISC/MIT183

• webpki, untrusted: ISC184

• webpki-roots: MPL-2.0185

NSS186

Network Security Services26 (NSS) is a set of security libraries developed by187

Mozilla. NSS provides its own API, which is currently only supported by a188

few of the applications which use TLS in Apertis, thus its use would require189

wrappers to be created or porting effort. It is licensed as MPL-2.027.190

wolfSSL191

The wolfSSL28 cryptographic library provides some compatibility with OpenSSL192

via a compatibility header, which maps a subset of the most commonly used193

OpenSSL commands to its native API. It provides up-to-date standards support.194

wolfSSL has already been packaged in Debian. It is available under a dual195

license, GPL-2+ and commercial29 licensing terms.196

Possible solutions197

We have considered the following options to meet Apertis’ requirements.198

25https://github.com/ctz/rustls/blob/master/audit/TLS-01-report.pdf
26https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
27https://www.mozilla.org/en-US/MPL/2.0/
28https://www.wolfssl.com/
29https://www.wolfssl.com/license/

7

https://github.com/ctz/rustls/blob/master/audit/TLS-01-report.pdf
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://www.mozilla.org/en-US/MPL/2.0/
https://www.wolfssl.com/
https://www.wolfssl.com/license/
https://github.com/ctz/rustls/blob/master/audit/TLS-01-report.pdf
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://www.mozilla.org/en-US/MPL/2.0/
https://www.wolfssl.com/
https://www.wolfssl.com/license/

Single stack solutions199

Despite the relatively large number of TLS implementations, the required appli-200

cation compatibility and licensing requirements mean that there is not a single201

solution that will work without investing at least some development effort.202

Attempting to standardize on a TLS implementation, such as by using the203

single stack solutions detailed below would therefore result in Apertis carrying204

significant changes to its packages without any guarantees that these changes205

could be upstreamed. These changes would thus need to be maintained as part206

of Apertis.207

Standardize on GnuTLS, replace use of problematic dependencies208

GnuTLS used to use libgcrypt as a cryptographic backend and the code is mostly209

structured to abstract the backend details. Reverting to using libgcrypt would210

result in a LGPL-2.1 licensed solution that may be viable for all desired use211

cases.212

A preliminary investigation suggests that GnuTLS may have started to use213

Nettle outside of the abstracted code, which would complicate conversion back214

to libgcrypt. More investigation would be required to confirm this.215

If libgcrypt is deemed unsuitable, an alternative may be to port GnuTLS to a dif-216

ferent cryptographic library such as libtomcrypt (Public Domain) or libsodium217

(ISC). The effort required to achieve this has not been investigated.218

It is likely that any resulting changes would need to be maintained as part of219

Apertis. It’s not clear the upstream GnuTLS project would be interested in220

maintaining another backend.221

Standardize on an OpenSSL-compatible library222

As many of the applications already utilize OpenSSL, another possible approach223

would be writing a wrapper for a library which provides OpenSSL compatibility224

to also provide the GnuTLS API.225

As GnuTLS itself comes with a wrapper providing OpenSSL API, it is believed226

that the reverse should also be possible. However, this presents some significant227

effort as the APIs are quite different.228

An alternative approach may be to port those apps which only support GnuTLS229

to utilize the OpenSSL API. The effort required to achieve this has not been230

estimated.231

Such an approach is of limited benefit as the more widely used and mature232

solutions providing an OpenSSL API are also licensed in such a way as to be233

incompatible with the GPL-2, which happens to be the license used by the most234

critical applications currently using GnuTLS.235

8

Wrappering a non-GnuTLS/OpenSSL-compatible library to provide236

both APIs237

Standardizing on NSS would fall into this category. This would also be true238

for mbed TLS, but the Apache-2.0 license that it is future version are likely to239

be solely licensed under would be problematic for GPL-2-licensed applications.240

This option would require significant effort (creating wrappers for both GnuTLS241

and OpenSSL APIs) and would be a high risk strategy.242

Multi-stack solutions243

Attempting to choose a TLS implementation that is licensed in a manner that244

will work for the GPL-2-licensed applications through to Apertis’ users propri-245

etary applications massively limits the choice of library. Most of the available246

choices only satisfy one or other end of this spectrum, with NSS and MesaLink247

being the only solutions that may be suitably licensed, but which also lacks248

compatibility with critical applications.249

As there does not appear to be any single TLS solutions meeting all use cases250

without significant work, we will consider keeping a multi stack solution as251

currently employed.252

In such a scenario, a newer GnuTLS library could be allowed by accepting its253

dependencies under the GPL-2 license and restricting its use to places where254

this license wouldn’t be problematic, such as existing GPL-2 software. As the255

existing applications written exclusively to use GnuTLS are GPL-2 or tolerant256

of GPL-2, this is viable.257

Replace OpenSSL with compatible alternative258

A number of alternative TLS implementations provide an “OpenSSL-259

compatible” interface of one form or other. Whilst a number of these solutions260

are not compatible with the GPL-2, as this solution would require the contin-261

ued availability of GnuTLS, the choice of replacement can be picked without262

needing to provide GPL-2 compatibility. This would suggest BoringSSL,263

LibreSSL and MesaLink as options (wolfSSL being immediately unsuitable due264

to licensing).265

• BoringSSL: Whilst actively maintained by Google for its own products,266

the lack of API/ABI guarantees make its adoption risky.267

• LibreSSL: It’s use inside OpenBSD suggests this will be maintained at268

least in the mid-term.269

• MesaLink: As Rust is good at detecting many security related issues at270

compile time, its use here brings many advantages, though this needs to271

be weighed against its lack of support of older TLS standards which may272

prove problematic in some use cases.273

9

Picking an API-compatible replacement for OpenSSL may provide a solution274

for the mid-term, however with OpenSSL set to release its new version at some275

point in the future, it is likely that we may start to see applications requiring276

compatibility with OpenSSL 3.0 APIs, thus requiring Apertis to reconsider its277

solution. Additionally, while these libraries claim OpenSSL compatibility, a278

different implementation may result in hard to diagnose bugs being uncovered279

in applications expecting OpenSSL.280

Consider OpenSSL to not pose a licensing issue281

The compatibility between the current OpenSSL licensing and GPL-2 is based282

on the premise that:283

1. The OpenSSL license30 contains licensing terms not in the GPL (such as284

the need to mention use of the software in all advertising material and285

derivatives not being able to be called OpenSSL).286

2. Linking OpenSSL with a GPL-2 application creates a derivative work287

formed from the two pieces of code.288

3. The GPL expressly states31 that one can’t “impose any further restrictions289

on the recipients’ exercise of the rights granted herein” to the GPL licensed290

work.291

Likewise, the Apache 2.0 license, to which version 3 of OpenSSL will be release292

under, contains clauses such as its patent litigation license termination clause32.293

While the argument made in step (2) is widely held by many, others disagree294

with this interpretation, especially when the library is dynamically linked to295

the application. For instance, it might be claimed33 that a dynamically linked296

library is only truly combined with the application when run, not when dis-297

tributed, so it would only become a derivative at that point, or it might be298

claimed34 as this is the intended interface for interacting with a library this is299

excluded either due to fair use laws in some jurisdictions or explicitly allowed300

by the GPL when it states35 “the act of running the Program is not restricted”.301

A further argument is that the GPL states36 “as a special exception, the source302

code distributed need not include anything that is normally distributed (in either303

source or binary form) with the major components (compiler, kernel, and so on)304

of the operating system on which the executable runs, unless that component305

itself accompanies the executable”. If the library is distributed as part of the306

OS and can be considered a major component of it, then this clause doesn’t307

require the library to be considered as part of the software and therefore falls308

30https://www.openssl.org/source/license-openssl-ssleay.txt
31https://www.gnu.org/licenses/old-licenses/gpl-2.0.html#section6
32http://www.apache.org/licenses/LICENSE-2.0#patent
33https://lwn.net/Articles/548216/
34https://www.linuxjournal.com/article/6366
35https://www.gnu.org/licenses/old-licenses/gpl-2.0.html#section0
36https://www.gnu.org/licenses/old-licenses/gpl-2.0.html#section3

10

https://www.openssl.org/source/license-openssl-ssleay.txt
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html#section6
http://www.apache.org/licenses/LICENSE-2.0#patent
https://lwn.net/Articles/548216/
https://www.linuxjournal.com/article/6366
https://www.linuxjournal.com/article/6366
https://www.linuxjournal.com/article/6366
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html#section0
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html#section3
https://www.openssl.org/source/license-openssl-ssleay.txt
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html#section6
http://www.apache.org/licenses/LICENSE-2.0#patent
https://lwn.net/Articles/548216/
https://www.linuxjournal.com/article/6366
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html#section0
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html#section3

outside of the scope of the license. A counter argument to this is that because309

the application may also be considered to be distributed as part of the operating310

system this exception doesn’t apply especially in embedded devices where the311

software is distributed preinstalled as a complete entity.312

Most distributions seem to either ignore this potential issue or do not consider a313

policy to be needed. The Fedora project have deemed OpenSSL to be a system314

library37 as defined by the GPL and thus there is no incompatibility. Debian315

historically decided that a linked library creates a derivative work and all the316

packages it ships should be considered a combined work, though the decision317

has recently been taken38 to follow Fedora’s lead here.318

Recommendations319

Whilst a single stack solution would present a number of benefits, this would320

require a significant outlay in effort one way or another to align the applications321

to the provided stack and to provide a stack that was licensed in an appropriate322

manner. Such an effort would result in Apertis straying away from well-trodden323

paths. Implementing security is hard, it’s easy to make mistakes that cause324

holes. This is especially problematic if the level of review is low, which would325

be the case for a highly-customized solution compared with existing ones. As326

a result, we feel that the potential risks of implementing a single stack solution327

outweigh the benefits it would bring.328

A two-stack approach requires separate solutions for GnuTLS and OpenSSL.329

The breakdown of applications supporting GnuTLS and OpenSSL means that330

we recommend upgrading GnuTLS to a new version for those applications that331

can use it licensed as GPL-2. The one outlier is the printing support in GTK,332

which potentially ends up causing GPL-2 dependencies in GTK. Whilst Debian333

have also declared CUPS as a system library, we feel that the differing use334

cases for Debian and Apertis make this less of a realistic position to take. We335

therefore recommend dropping printing support from GTK in order to remove336

this dependency as we don’t feel that this functionality is critical to Apertis’337

aim.338

A number of potential alternatives exist for OpenSSL, but some of the solutions339

are impractically licensed (such as wolfSSL dual-licensed under the GPL-2 and340

a commercial license) and the remainder do not improve the licensing situation341

over OpenSSL (they share at least some code with OpenSSL under its original342

license). As a result it is our recommendation to consider OpenSSL as a system343

library and continue utilizing it, inline with the other distributions that have344

documented a specific policy covering this.345

The table below summarizes which libraries each of the identified dependents346

37https://fedoraproject.org/wiki/Licensing:FAQ?rd=Licensing/FAQ#What.27s_the_
deal_with_the_OpenSSL_license.3F

38https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=924937#105

11

https://fedoraproject.org/wiki/Licensing:FAQ?rd=Licensing/FAQ#What.27s_the_deal_with_the_OpenSSL_license.3F
https://fedoraproject.org/wiki/Licensing:FAQ?rd=Licensing/FAQ#What.27s_the_deal_with_the_OpenSSL_license.3F
https://fedoraproject.org/wiki/Licensing:FAQ?rd=Licensing/FAQ#What.27s_the_deal_with_the_OpenSSL_license.3F
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=924937#105
https://fedoraproject.org/wiki/Licensing:FAQ?rd=Licensing/FAQ#What.27s_the_deal_with_the_OpenSSL_license.3F
https://fedoraproject.org/wiki/Licensing:FAQ?rd=Licensing/FAQ#What.27s_the_deal_with_the_OpenSSL_license.3F
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=924937#105

we’d expect to use under the above recommendations. We would expect pro-347

prietary applications to either utilize the OpenSSL or NSS libraries as deemed348

appropriate by the individual projects.349

Component350

License351

Via Curl352

TLS Library support353

OpenSSL354

GnuTLS355

NSS356

apt357

GPL-2+358

X359

connman360

GPL-2361

X362

cups363

Apache-2.0-with-GPL2-LGPL2-Exception364

curl365

curl and BSD-3-Clause and BSD-4-Clause-UC and ISC366

X367

X368

X369

glib-networking370

LGPL-2.1+ and LGPL-2.1+ with OpenSSL exception371

X372

liboauth373

Expat/MIT374

X375

X376

libmicrohttpd377

12

LGPL-2.1+378

X379

X380

neon27381

LGPL-2.1+382

X383

X384

openjpeg385

BSD-2386

X387

X388

openldap389

OLDAP-2.8390

X391

rtmpdump392

GPL-2+ (tools), LGPL-2.1+ (library)393

X394

systemd395

LGPL-2.1+ and GPL-2[+] and PD396

X397

X398

tumbler399

LGPL-2.1+ and GPL-2+400

X401

X402

Appendix403

Details of TLS library usage in target404

Component405

License406

13

TLS Library support407

Notes408

OpenSSL409

GnuTLS410

NSS411

apt412

GPL-2+413

X414

connman415

GPL-2416

Optional417

Requires GnuTLS for WISPr39.418

cups419

Apache-2.0-with-GPL2-LGPL2-Exception420

X421

curl422

curl and BSD-3-Clause and BSD-4-Clause-UC and ISC423

X424

X425

X426

Curl produces libraries utilizing each of the 3 TLS libraries it supports (‘libcurl4-427

openssl‘, ‘libcurl4-gnutls‘ and ‘libcurl4-nss‘). Various tools in Apertis are built428

against these, with ‘libcurl4-gnutls‘ having been preferred. Most of these pack-429

ages can also be built with libcurl4-openssl. For some of these packages, the430

GnuTLS variant was chosen because it has a compatible license (tumbler, sys-431

temd). Used by ‘liboauth0‘, ‘libopenjpip-server‘, ‘systemd-container‘, ‘systemd-432

journal-remote‘ & ‘tumbler-plugins-extra‘.433

glib-networking434

LGPL-2.1+ and LGPL-2.1+ with OpenSSL exception435

X436

X437

39https://en.wikipedia.org/wiki/WISPr

14

https://en.wikipedia.org/wiki/WISPr
https://en.wikipedia.org/wiki/WISPr

neon27438

LGPL-2.1+439

X440

X441

Used by syncevolution (LGPL-2.1+). Review needed to determine whether442

syncevolution is necessary in target.443

openldap444

OLDAP-2.8445

X446

X447

X448

rtmpdump449

GPL-2+ (tools), LGPL-2.1+ (library)450

X451

X452

Currently using GnuTLS, Nettle and GMP, though may use OpenSSL instead.453

This is only used by libcurl in target, this functionality may be able to be454

disabled.455

Usage of libcurl456

Component457

License458

Expected libcurl variant459

Notes460

OpenSSL461

GnuTLS462

NSS463

liboauth464

Expat/MIT465

X466

X467

libmicrohttpd468

15

LGPL-2.1+469

X470

X471

X (test suite only)472

Used by systemd-journal-remote and systemd-pull. Requires GnuTLS for473

HTTPS support (optional).474

openjpeg475

BSD-2476

X477

X478

Used by libopenjpip-server.479

systemd480

LGPL-2.1+ and GPL-2[+] and PD481

X482

X483

Uses libcurl via libmicrohttpd for systemd-journal-remote and systemd-484

container (systemd-pull), see above.485

tumbler486

LGPL-2.1+ and GPL-2+487

X488

Usage of GMP489

Component License Notes
dnsmasq GPL-2/GPL-3
gcc GPL-3 Already licensed under the GPL-3 with an exception for the runtime libraries, uses GMP from the already GPL-3 binaries, not used by the runtime libraries. The upgrade of GMP would not affect the effective licensing terms.
ruby-google-protobuf BSD-3-Clause Built by the ‘protobuf‘ package, nothing actually depends on the ruby bindings and thus it may be an option to disable these bindings.

16

	Overview of the existing situation
	Issue
	Goals and requirements
	Alternative SSL solutions
	BoringSSL
	LibreSSL
	mbed TLS
	MesaLink
	NSS
	wolfSSL

	Possible solutions
	Single stack solutions
	Standardize on GnuTLS, replace use of problematic dependencies
	Standardize on an OpenSSL-compatible library
	Wrappering a non-GnuTLS/OpenSSL-compatible library to provide both APIs

	Multi-stack solutions
	Replace OpenSSL with compatible alternative
	Consider OpenSSL to not pose a licensing issue

	Recommendations
	Appendix
	Details of TLS library usage in target
	Usage of libcurl
	Usage of GMP

