
Test case dependencies on immutable rootfs

Contents1

Test case dependencies on immutable rootfs 22

Overview . 23

Possible solutions . 24

Overview of applicable approach . 25

Rework tests to ship their dependencies in ‘/var/lib/tests‘ 26

OStree branch or static deltas usage 37

OStree overlay . 48

Overall proposal . 49

Create separate git repository for each test 510

Reduce dependencies . 511

Make test relocatable . 512

Test case dependencies on immutable rootfs13

Overview14

Immutable root filesystems have several security and maintainability advan-15

tages, and avoiding changes to them increases the value of testing as the system16

under test would closely match the production setup.17

This is fundamental for setups that don’t have the ability to install packages at18

runtime, like OSTree-based deployments, but it’s largely beneficial for package19

based setups as well.20

To achieve that, tests should then ship their own dependencies in a self-contained21

way and not rely on package installation at runtime.22

Possible solutions23

For adding binaries into OStree-based system, the following approaches are24

possible:25

• Build the tests separately on Jenkins and have them run from26

/var/lib/tests;27

• Create a Jenkins job to extract tests from their .deb packages shipped on28

OBS and to publish the results, so they can be run from /var/lib/tests;29

• Use layered filesystem for binaries install on top of testing image;30

• Publish a separate OStree branch for tests created at build time from the31

same OS pack as image to test;32

• Produce OStree static deltas at build time from the same OS pack as33

image to test with additional packages/binaries installed;34

• Create mechanism for dpkg similar to RPM-OStree project* to allow in-35

stallation of additional packages in the same manner as we have for now.36

2

– Creation of dpkg-ostree project will use a lot of time and human37

resources due to changes in dpkg and apt system utilities.38

Overview of applicable approach39

Rework tests to ship their dependencies in ‘/var/lib/tests‘40

Build the tests separately and have them run from /var/lib/tests or create a41

Jenkins job to extract tests from their .deb packages to /var/lib/tests42

Pros:43

• ‘clean’ testing environment – the image is not polluted by additions, so44

tests and dependencies have no influence on SW installed on image45

• possibility to install additional packages/binaries in runtime46

Cons:47

• some binaries/scripts expect to find the dependencies in standard places48

– additional changes are needed to create the directory with relocated test49

tools installed50

• we need to be sure if SW from packages works well from relocated directory51

• additional efforts are needed to maintain 2 versions of some packages52

and/or packaging for some binaries/libraries might be tricky53

• can’t install additional packages without some preparations in a build time54

(save dpkg/apt-related infrastructure or create a tarball from pre-installed55

SW)56

• possible versions mismatch between SW installed into testing image and57

SW from tests directory58

• problems in dependencies installation are detected only in runtime59

OStree branch or static deltas usage60

Both approaches are based on native OStree upgrade/rollback mechanism – only61

transport differs.62

Pros:63

• test of OStree upgrade mechanism is integrated64

• easy to create and maintain branches for different groups of tests – so only65

SW needed for the group is installed during the tests66

• developer can obtain the same environment as used in LAVA in a few67

ostree commands68

• problems with installation of dependencies for the test are detected in a69

buildtime70

• the original image do not need to have wget, curl or any other tool for71

download – ostree tool have own mechanism for download needed commit72

from test branches73

3

• with OStree static deltas we are able to test ‘offline’ upgrades without74

network access75

• saves a lot of disk space for infrastructure due OStree repository usage76

Cons:77

• ‘dirty’ testing environment – the list of packages is not the same as we78

have in testing image; e.g. system places for binaries and libraries are used79

by additional packages installed, as well as changes in system configura-80

tion might occur (the same behavior we have in current test system with81

installation of additional packages via apt)82

• not possible to install additional packages at runtime83

• additional branch(es) should be created at build time84

• reboot is needed to apply the test environment85

• in case of OStree static deltas – creation of delta is an expensive operation86

in terms of time and resources usage87

OStree overlay88

Overlay is a native option provided by ostree project, re-mounting “/usr” direc-89

tory in R/W mode on top of ‘overlayfs’. This allows to add any software into90

“/usr” but changes will disappear just after reboot.91

Pros:92

• limited possibility to install additional packages at runtime (with saved93

state of dpkg and apt) – merged “/usr” is desirable94

• possibility to copy/unpack prepared binaries directly to “/usr” directory95

• able to use OStree pull/checkout mechanism to apply overlay96

Cons:97

• dirty testing environment – the list of packages is not the same as we have98

in testing image99

• OStree branch should contain only “/usr” if used. In other case need to100

use foreign for OStree methods to store binaries and/or filesystem tree101

• can’t apply additional software without some preparations in a build time102

(save dpkg/apt-related infrastructure, create a tarball from pre-installed103

SW or create an ostree branch)104

• possible versions mismatch between SW installed into testing image and105

SW from tests directory106

• problems in dependencies installation are detected only in runtime107

Overall proposal108

The proposal consist of a transition from a full apt based test mechanism to a109

more independant test mechanism.110

4

Each tests will be pulled of apertis-tests and moved to its own git repository.111

During the move, the test will be made relocatable, and its dependencies will112

be reduced.113

Dependencies that could not be removed would be added to the test itself.114

At any time, it would still be possible to run the old tests on the non OSTree115

platform. The new test that have already be transitionned could run on both116

OSTree and apt platforms.117

The following steps are envisioned.118

Create separate git repository for each test119

In order to run the tests on LAVA, the use of git is recommended. LAVA120

is already able to pull test definitions from git, but it can pull only one git121

repository for each test.122

To satisfy this constraint, each test definition, scripts, and dependencies must123

be grouped in a single git repository.124

In order to run the tests manually, GitLab is able to dynamically build a tarball125

with the content of a git repository at any time. The tarball can be retrieved126

at a specific URL. By specifying a branch other than master, a release-specific127

test can be generated. A tool such as wget or curl can be used, or it might be128

necessary to download the test tarball from a host, and copy it to the device129

under test using scp.130

Reduce dependencies131

To minimize impact of the tests dependencies on the target environment,132

some dependencies need to be dropped. For example, Python requires several133

megabytes of binaries and dependencies itself, so all the Python scripts will134

need to be rewritten using Posix shell scripts or compiled binaries.135

For tests using data files, the data should be integrated in the git repository.136

Make test relocatable137

Most of the tests rely on static path to find binaries. It is straightforward to138

modify a test to use a custom PATH instead of static one. This custom PATH would139

point to a subdirectory in the test repository itself.140

This applies to dependencies which could be relocated, such as statically linked141

binaries, scripts, and media files.142

For the test components that might not be ported easily, such as For example143

AppArmor profiles that are designed to work on binaries at fixed locations, a144

case-by-case approach needs to be taken.145

5

	Test case dependencies on immutable rootfs
	Overview
	Possible solutions
	Overview of applicable approach
	Rework tests to ship their dependencies in `/var/lib/tests`
	OStree branch or static deltas usage
	OStree overlay

	Overall proposal
	Create separate git repository for each test
	Reduce dependencies
	Make test relocatable

