
Integration of OP-TEE in Apertis

Contents1

System Architecture 32

Boot Process . 43

Trusted Applications . 54

Virtualisation Support . 55

Enabling TEE in Apertis 66

Secure Boot . 67

ARM Trusted Firmware . 68

Requirements . 79

OP-TEE OS . 710

Linux Kernel . 711

OP-TEE Supplicant and User Space Libraries 712

Sample TAs . 713

Test Suite . 814

Debos Scripting . 815

Next Steps 816

Choice of Reference Platform . 817

Test Integration . 918

Some projects that wish to use Apertis have a requirement for strong security19

measures to be available in order to implement key system level functionality.20

A typical use case is enabling the decryption of protected content in such a way21

that doesn’t allow the owner of the device doing the decryption to access the22

decryption keys. Another use for strong security is the protection of authenti-23

cation keys. By shielding such keys within these strong security measures, it24

becomes much harder for the keys to be stolen and be used to impersonate the25

legitimate user.26

2

Cloud
Service

Apertis
Application

Secure
Environment

Cloud
Service

Apertis
Application

Secure
Environment

2) Challenge returned

1) Access request

3) Request to sign

4) Signed challenge returned

5) Signed challenge sent

27

In the above example, when requesting access to the cloud service, the service28

returns a challenge response, which needs to be signed using asymmetric cryp-29

tography1. The Apertis application requests that functionality in the secure30

environment sign the challenge using a private key that it stores securely. The31

signed challenge is then returned to the cloud service, which checks the validity32

of the signature using the public key that it holds to authenticate the user.33

Such systems may additionally require the state of the system to be verified34

(typically by building a chain of trust2) before use of the secure keys is allowed,35

thus ensuring the device hasn’t been altered in ways which may compromise36

protection of the keys.37

Whilst a system could be architected to utilise a separate processor to perform38

such tasks, this significantly drives up system complexity and cost. Some plat-39

forms provide a mechanism to enable a secure, trusted environment or “Trusted40

Execution Environment3” (TEE) to be setup. A TEE runs on the application41

processor, but with mechanisms in place to isolate the code or data of the two42

running systems (the TEE and the main OS) from each other. ARM provides43

an implementation of such security mechanisms, known as ARM TrustZone4,44

mainly on Cortex-A processors.45

1https://en.wikipedia.org/wiki/Public-key_cryptography
2https://en.wikipedia.org/wiki/Chain_of_trust
3https://en.wikipedia.org/wiki/Trusted_execution_environment
4https://developer.arm.com/ip-products/security-ip/trustzone

3

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Chain_of_trust
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://developer.arm.com/ip-products/security-ip/trustzone
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Chain_of_trust
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://developer.arm.com/ip-products/security-ip/trustzone

System Architecture46

OP-TEE

ARM Trusted Firmware

Trusted ApplicationApertis Application

Linux Kernel

tee-supplicant

tee subsystem

TEE Client API Library

OP-TEE driver

TEE Internal API

47

A TEE exists as a separate environment running in parallel with the main op-48

erating system. At boot, both of these environments need to be loaded and49

initialised, this is achieved by running special boot firmware which enables the50

TrustZone security features and loads the required software elements. When51

enabled, a “secure monitor” runs in the highest privilege level provided by the52

processor. The secure monitor supports switching between the trusted and53

untrusted environments and enabling messages to be passed from one environ-54

ment to the other. ARM provide a reference secure monitor as part of the ARM55

Trusted Firmware5 (ATF) project. The ATF secure monitor provides an API to56

enable the development of trusted operating systems to run within the trusted57

environment, one such trusted OS is the open source OP-TEE6. OP-TEE pro-58

vides a trusted environment which can run Trusted Applications (TAs), which59

are written against the TEE internal API.60

As well as starting up a trusted OS in the trusted environment, ATF typi-61

cally starts a standard OS such as Linux on the untrusted side, known as the62

rich operating system or “Rich Execution Environment” (REE), by running the63

firmware normally used for this OS. It is necessary for the OS to have drivers64

capable of interfacing with the secure monitor and that understands how to65

format messages for the trusted OS used on the trusted side. Linux contains66

a TEE subsystem7 which provides a standardised way to communicate with67

TEE environments. The OP-TEE project have upstreamed a driver8 to this68

subsystem to enable communications with the OP-TEE trusted environment.69

OP-TEE relies on the REE to provide a number of remote services, such as file70

system access, as it does not have drivers for this functionality itself. The OP-71

5https://github.com/ARM-software/arm-trusted-firmware
6https://www.op-tee.org/
7https://www.kernel.org/doc/Documentation/tee.txt
8https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/tee/

optee

4

https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://www.op-tee.org/
https://www.kernel.org/doc/Documentation/tee.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/tee/optee
https://github.com/ARM-software/arm-trusted-firmware
https://www.op-tee.org/
https://www.kernel.org/doc/Documentation/tee.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/tee/optee
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/tee/optee

TEE project provides a Linux user space supplicant daemon9 which supplies the72

services required by the trusted environment. A library is also provided which73

implements a standardised mechanism, documented in the GlobalPlatform TEE74

Client API Specification v1.010, for communicating with the TEE. It is expected75

for this library to be used by applications needing to communicate with the TAs.76

Boot Process77

From a high level, the basic change required to the boot process is that the TEE78

need to be setup before the REE. The factor missing from this description is79

security. In order for the TEE to be able to achieve it’s stated goal, providing a80

secure environment, it is necessary for the boot process to be able to guarantee81

that at least the setup of the TEE has not been tampered with. Such guarantees82

are provided by enabling secure boot for the relevant platform.83

The process used to perform a secure boot is dependent on the mechanisms84

provided by the platform which vary from vendor to vendor. Typically it re-85

quires the boot process to be locked down to boot from known storage (such86

as a specific flash device) and for the boot binaries to be signed so that they87

can be verified at boot. The keys used for verification are usually read-only and88

held in fuses within the SoC.89

The signed binaries comprise a series of bootloaders which progressively bring90

up the system, each being able to perform a bit more of the process utilising91

support enabled by earlier bootloaders. This series of bootloaders will load the92

secure monitor (known as EL3 Runtime Software in this context), OP-TEE (the93

Secure-EL1 Payload) and finally U-Boot (the Non-trusted Firmware), which loads94

Linux.95

The ARMv8 architecture provides 4 privilege levels. The lowest privilege level,96

PL0, is used for executing user code under an OS or hypervisor. The next level,97

PL1, is used for running an OS like Linux, with PL2 above it available to run98

a hypervisor. The highest level PL3 is used for the secure monitor.99

A more in-depth description of the boot process can be found in the OP-TEE100

documentation11.101

Trusted Applications102

Trusted Applications (TAs) are applications that run within the trusted environ-103

ment, on top of OP-TEE. Trusted Applications are used to provide the secured104

services and functionality that is needed in the platform. The TAs are identified105

by a UUID and are usually loaded from a file stored in the untrusted file system106

named after the UUID. In order to ensure the TAs haven’t been tampered with107

they are signed. If the contents of the TA should remain protected, there are108

9https://github.com/OP-TEE/optee_client
10https://globalplatform.org/specs-library/tee-client-api-specification/
11https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html

5

https://github.com/OP-TEE/optee_client
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html
https://github.com/OP-TEE/optee_client
https://globalplatform.org/specs-library/tee-client-api-specification/
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html

options for storing it encrypted for further protection. Alternatively, if a TA is109

required before the tee-supplicant is running (and hence able to access the TA110

from the file system), TAs can also be built into the firmware as an early TA. A111

more in-depth description of TA implementation can be found in the OP-TEE112

documentation12.113

The OP-TEE project provides a number of TA examples13.114

Trusted Applications provide immense flexibility in the functionality that can115

be provided from the TEE environment. This flexibility is such that a proof of116

concept has been completed implementing a TPM 2.0 implementation14 that117

can be used in OP-TEE15.118

Virtualisation Support119

As the hypervisor and secure monitor each have a separate privilege level, it120

is possible for the TEE to co-exist with systems running a hypervisor. OP-121

TEE currently has experimental support16 for the XEN hypervisor running122

on an emulated ARMv8 system. The current approach provides a separate123

context for each of the Virtual Machines (VMs) running on the hypervisor.124

This requires support from the hypervisor to enable communication between the125

Virtual Machines (VM) running on the hypervisor and the TEE and to ensure126

the TEE is using the context associated with the calling VM. The experimental127

support currently disables access to hardware resources, such as cryptographic128

engines, in the TEE as a mechanism to share such resources safely between the129

separate TEE contexts has not yet been created.130

Enabling TEE in Apertis131

Apertis does not provide the vast majority of the functionality needed to im-132

plement a TEE. A number of steps need to be taken in order to enable TEE133

support in Apertis.134

Secure Boot135

Secure boot provides an initial important step in initialisation of the TEE by136

ensuring that the initialisation process is able to proceed without interference.137

Unfortunately this fundamental step is very platform dependent and can not138

be solved as a general case. Apertis has already taken steps to document and139

demonstrate secure boot17. At the moment, Apertis only ships some support140

for secure on the SABRE Lite platform. This provides a good reference for the141

12https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
13https://github.com/linaro-swg/optee_examples
14https://github.com/Microsoft/ms-tpm-20-ref
15https://github.com/jbech-linaro/manifest/tree/ftpm
16https://optee.readthedocs.io/en/latest/architecture/virtualization.html
17https://sjoerd.pages.apertis.org/apertis-website/architecture/secure-boot/

6

https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://github.com/linaro-swg/optee_examples
https://github.com/Microsoft/ms-tpm-20-ref
https://github.com/jbech-linaro/manifest/tree/ftpm
https://optee.readthedocs.io/en/latest/architecture/virtualization.html
https://sjoerd.pages.apertis.org/apertis-website/architecture/secure-boot/
https://sjoerd.pages.apertis.org/apertis-website/architecture/secure-boot/
https://sjoerd.pages.apertis.org/apertis-website/architecture/secure-boot/
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://github.com/linaro-swg/optee_examples
https://github.com/Microsoft/ms-tpm-20-ref
https://github.com/jbech-linaro/manifest/tree/ftpm
https://optee.readthedocs.io/en/latest/architecture/virtualization.html
https://sjoerd.pages.apertis.org/apertis-website/architecture/secure-boot/

overall process but, unfortunately, the SABRE Lite is not a good choice as a142

technology demonstrator for TEE due to its age.143

We advise the implementation of a TEE demonstrator on a more modern plat-144

form to take advantage of the more advanced functionality found in such plat-145

forms. This will be covered in more detail in our recommendations for the next146

steps.147

In addition to the board verifying the initial binaries that are executed, it is148

important that the verification of binaries continues through the boot process149

in order to build a chain of trust18 so that later stages can determine whether150

boot was carried out appropriately.151

ARM Trusted Firmware152

The current ARM Trusted Firmware package in Debian does not build for any153

platforms currently supported in Apertis. The package will need to be tweaked154

to sign the ATF binaries using an Apertis key. In order to support ATF in155

Apertis, one of the following options will need to be taken:156

• Adopt a platform already supported by the build as an additional platform157

in Apertis158

• Enable support for a platform supported by ATF but not currently built159

by the deb packaging160

• Add support for a preferred platform to ATF and enable it in the packag-161

ing162

From the perspective of enabling ATF, these are broadly in order of effort,163

though clearly adding an additional platform to Apertis increases the effort for164

ongoing baseline maintenance.165

Requirements166

In order to implement Trusted Board Boot19 it will be necessary to upgrade167

mbedtls. This functionality is likely to be considered critical by project develop-168

ers.169

OP-TEE OS170

The OP-TEE project provides the OP-TEE OS20 as the trusted OS that runs171

in the TEE. This is not currently packaged for Debian and it would need to be172

to incorporated into Apertis. Like ATF, an Apertis key will need to be used to173

sign the binaries intended for the TEE to ensure the chain of trust. Currently174

when OP-TEE is built, it embeds the public key that will be used for verifying175

TAs. As with the key/keys used in other steps of this process, in order to ensure176

18https://en.wikipedia.org/wiki/Chain_of_trust
19https://trustedfirmware-a.readthedocs.io/en/latest/design/trusted-board-boot.html
20https://github.com/OP-TEE/optee_os

7

https://en.wikipedia.org/wiki/Chain_of_trust
https://trustedfirmware-a.readthedocs.io/en/latest/design/trusted-board-boot.html
https://github.com/OP-TEE/optee_os
https://en.wikipedia.org/wiki/Chain_of_trust
https://trustedfirmware-a.readthedocs.io/en/latest/design/trusted-board-boot.html
https://github.com/OP-TEE/optee_os

that products are properly secured, would be necessary for product teams to at177

a minimum replace the key used with a product specific one. A product team178

may wish to modify OP-TEE to support alternative key management solutions,179

this is expected by the OP-TEE developers21.180

In addition to the trusted OS, the build of the OP-TEE OS source also builds181

the TA-devkit. The TA-devkit provides the resources necessary to both build182

and sign TAs. The TA-devkit will need to be packaged so that it can be provided183

as a build dependency for any TAs.184

Linux Kernel185

Debian (and thus the Apertis config) does already enable the TEE subsystem186

on arm64 where ATF can be used. It is understood that this should be sufficient187

and thus no extra modifications to the kernel will be required.188

OP-TEE Supplicant and User Space Libraries189

In addition to the trusted OS, the OP-TEE project provides the OP-TEE sup-190

plicant and TEE Client API22. The supplicant provides services to OP-TEE191

that it does not directly provide itself and the TEE Client API provides a user192

space API in the REE to communicate with the TEE. As with the OP-TEE193

OS, these components are currently not packaged for Debian and would need194

to be. As these components run in the REE they don’t need to be signed.195

Sample TAs196

To enable early investigation of TEEs on Apertis, the example TAs23 should197

be packaged. For simple use cases, it may be that these examples either fulfil198

or provide a framework for development of the TEE requirements. They will199

provide a useful reference of how to package TAs for Apertis even for the use200

cases that are not covered by the examples.201

The sample TAs will be signed with the key provided by the Apertis TA-devkit202

package (which will be a build dependency) and thus will be usable with the203

OP-TEE OS built for Apertis.204

Test Suite205

A test suite24 exists for OP-TEE. Providing this in Apertis would enable de-206

velopers to gain some confidence that OP-TEE was installed and initialised207

correctly.208

21https://github.com/OP-TEE/optee_os/issues/2233#issuecomment-379253182
22https://github.com/OP-TEE/optee_client
23https://github.com/linaro-swg/optee_examples
24https://github.com/OP-TEE/optee_test

8

https://github.com/OP-TEE/optee_os/issues/2233#issuecomment-379253182
https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_client
https://github.com/linaro-swg/optee_examples
https://github.com/OP-TEE/optee_test
https://github.com/OP-TEE/optee_os/issues/2233#issuecomment-379253182
https://github.com/OP-TEE/optee_client
https://github.com/linaro-swg/optee_examples
https://github.com/OP-TEE/optee_test

Debos Scripting209

Once components are added to the Apertis project, we need a way to combine210

them into an image that can be booted on the target platform. In Apertis211

this is performed by Debos using configuration files to determine exactly what212

packages are added to each image. This also allows for the images to be built213

automatically and regularly using the latest versions of packages. A special214

image to automate configuration of the boot process can also be generated like215

the one provided to update the U-Boot bootloader for the i.MX6 SABRE Lite216

board25.217

Next Steps218

Integrating OP-TEE into Apertis substantially alters the boot process and re-219

quires secure boot to be working effectively to be valuable.220

Whilst the research carried out to write this proposal has attempted to consider221

the impacts of adding this support to Apertis, there remains a risk that some222

potential issues have gone unnoticed. We therefore advise following up this223

document with adding the support to Apertis for at least one reference platform224

so that the basic components are formally integrated into Apertis; to provide as225

a solid reference for product teams and further lower the risk of Apertis adoption226

for teams wishing to use OP-TEE.227

Choice of Reference Platform228

The OP-TEE project is specifically targeted towards the ARM ecosystem, specif-229

ically those that provide ARM TrustZone. ARM TrustZone has been improved230

in later iterations of the technology and standardised with a reference implemen-231

tation available to for using TEEs as part of the ATF project. We recommend232

that a platform that is capable of utilising ATF is chosen for this reference. An233

advantage of implementing the TEE using ATF is that this provides a standard-234

ised interface for the trusted OS and thus allows Apertis to potentially be used235

with alternative trusted OS implementations.236

Test Integration237

The availability of a test suite provides some coverage of the OP-TEE function-238

ality with minimal effort as this should be usable from automated testing.239

Whilst the test suite will test operation of OP-TEE itself, an important part of240

initialising a TEE is the platform specific secure boot. Unless using a platform241

very closely aligned with an Apertis reference platform, this step will be the242

responsibility of the product team. To ensure that this is properly implemented,243

25https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/
v2021dev2/mx6qsabrelite-uboot-installer.yaml

9

https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev2/mx6qsabrelite-uboot-installer.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev2/mx6qsabrelite-uboot-installer.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev2/mx6qsabrelite-uboot-installer.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev2/mx6qsabrelite-uboot-installer.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev2/mx6qsabrelite-uboot-installer.yaml

tests could be developed that attempt to utilise incorrectly signed binaries at244

the different stages of the boot process to ensure that each step is properly245

validated, providing a reference for how to test secure boot.246

Experience with the SABRE Lite has shown that whilst devices may be set up247

to emulate a secured configuration, their behavior differs from the behavior of248

devices locked via its embedded fuses. Since boards locked in a secure boot con-249

figuration no longer allow some operations, they become less useful for general250

development. For this reason, a dedicated set of boards locked via fuses may be251

required to fully test that secure boot restrictions are being enforced.252

10

	System Architecture
	Boot Process
	Trusted Applications
	Virtualisation Support

	Enabling TEE in Apertis
	Secure Boot
	ARM Trusted Firmware
	Requirements

	OP-TEE OS
	Linux Kernel
	OP-TEE Supplicant and User Space Libraries
	Sample TAs
	Test Suite
	Debos Scripting

	Next Steps
	Choice of Reference Platform
	Test Integration

