
Multiuser transactional switching

Contents1

Terminology . 22

Requirements . 23

Assumptions . 34

Use-case scenarios . 45

Technical considerations . 126

Approach . 137

Multiple users should be able to use the system, though not con-8

currently . 139

Switching users should not disturb some of the core functionality,10

such as music playing . 1411

When the user starts the system they should find the same appli-12

cations they had left open at shutdown, and in the same13

state . 1514

When switching users, open applications must remain open . . . 1515

Switching users shall be performed with a smooth transition, with16

no visual flickering . 1717

User switching should not take more than 5 seconds 1718

User data is private to each user 1719

Removable devices are accessible to all users and all users can20

unmount/eject them . 1821

Limiting customizability as a trade-off 1822

Recommendations summary . 1823

This document describes one particular set of use-cases for how multiple users24

are expected to use the Apertis system, using the Multiuser Design document1 as25

a base. It starts by describing the use cases that are believed to be important in26

the automotive context, followed by a technical analysis and recommendations.27

The specific set of use cases on which this document focuses is a “transactional”28

temporary switch between users, which is a relatively unusual situation in main-29

stream computing, but has been identified as a situation that is more likely to30

arise in an automotive environment.31

In order to balance the various requirements and priorities that might be present32

in OEM variants of Apertis, it is useful to consider trade-offs such as not allowing33

user switching in runtime, if implementing an ideal user experience for this34

feature would be too onerous or only possible with a sub-par experience. The35

amount of customization allowed would then be reduced to account for this36

design restriction, as discussed in Limiting customizability as a trade-off37

Terminology38

Please see the Multiuser Design document1 for the definitions used in this doc-39

ument for jargon terms such as user, user ID/uid, trusted, system service, user40

service, multi-seat and fast user switching.41

1https://sjoerd.pages.apertis.org/apertis-website/concepts/multiuser/

2

https://sjoerd.pages.apertis.org/apertis-website/concepts/multiuser/
https://sjoerd.pages.apertis.org/apertis-website/concepts/multiuser/

Requirements42

See the Multiuser Design document for general requirements applicable to all43

aspects of the multi-user design in Apertis. This document focuses on one set44

of use cases which has been identified as requiring detailed design: a “transac-45

tional” switch between users.46

The driver is the primary user of the car, and hence the car’s infotainment inter-47

face; but because the driver must be able to focus on driving, it is desirable that48

the front-seat passenger can “take over” a shared screen (for instance, in the typ-49

ical design that places a touchscreen between the driver and front passenger) so50

that they can carry out a task on the driver’s behalf (for instance, programming51

a navigation destination or finding a required piece of information).52

The Apertis user interface is anticipated to be customizable, and the passenger’s53

preferences do not necessarily match the driver’s. As a result, it is desirable that54

the passenger can temporarily switch to a set of preferences with which they55

are more familiar.56

Depending on the specific use-case, it might be necessary for the passenger to57

access their own private data (as opposed to the driver’s private data).58

When switching users, it must be possible for open applications to remain open.59

Some use-cases benefit from this, and some do not.60

Some of the requirements from the Multiuser Design document are particularly61

relevant to this design, and are re-stated here:62

• Switching users shall be performed with a smooth transition, with no63

visual flickering.64

• User switching should not take more than 5 seconds.65

Assumptions66

Some of the requirements in the Multiuser Design document are stated in terms67

of a class of possible sets of requirements, among which a concrete design must68

make a choice. In this document we have assumed the following requirements.69

• User data is private to each user:70

– Settings71

– Address book72

– Browser history73

– Application icons74

– Arrangement of icons in the app launcher75

– Account data for web services76

– Playlists77

3

• The following will be shared, if that makes the design simpler:78

– Applications (from the store)79

– Media library (music, videos)80

– Paired Bluetooth devices81

• Removable devices are accessible to all users and all users can un-82

mount/eject them83

The idea is that application binaries, libraries and other supporting data, as well84

as media files, will be shared, but each user will have their own view of those.85

That means for instance that when an application is installed by a user for the86

first time its icon would appear only on the current user’s launcher. When other87

users install the application no download would be necessary – it would just be88

a matter of making the icon appear on that user’s launcher.89

Out of scope for this document90

Some configurations are outside the scope of this particular proposal. They91

could be supported by a different concrete design within the general framework92

described by the Multiuser Design document.93

• Multiple concurrent users are out-of-scope: to provide desired performance94

on optimized hardware, each user’s applications will not in general remain95

active when another user is logged in. Instead, the previous user’s pro-96

cesses will be instructed to save their state and exit so that they can be97

resumed later. An implementation may have both sessions run in parallel98

for a short time if necessary, in order to facilitate a smooth transfer, but99

this is intended to be merely a transitional state.100

• Multi-seat (as defined by the Multiuser document) is out-of-scope: for101

the same reasons, if there are multiple screens, they will all be associated102

with the same user. In this document we do not aim to support separate103

concurrent logins on different screens (e.g. separate sessions for rear-seat104

passengers).105

Use-case scenarios106

This design includes all of the use-cases described in the Multiuser Design docu-107

ment, including those that require user switching and optional privacy between108

users.109

When we approach the implementation stage for this design, it would benefit110

from input from a UX designer, with two main aims: first, confirm that the use111

cases and their suggested workflows make sense; and second, for use cases that112

benefit from “hinting” the user towards particular actions, recommend ways in113

which this can be done.114

4

Passenger acts on behalf of driver; access to driver’s private data115

Driver Diana and passenger Peter are on the way to visit Peter’s friend Fred.116

Diana asks Peter to check Fred’s exact address. Fred has shared the address on117

Facebook, in a post that is visible to Diana but not to Peter, or to both Diana118

and Peter.119

Trivial case120

Assuming that the driver’s display is situated between the driver and the front121

passenger as is conventional, Peter can use the shared display that is currently122

“logged in” as Diana. The system has no way to distinguish between input from123

Peter and input from Diana.124

Comments: This use case is trivial to implement – indeed, it would be difficult125

to avoid implementing it – and it is equivalent to the behaviour of a single-user126

system. It is only mentioned here for comparison with the more complex use-127

cases below, where the system needs to be aware that the person using it has128

changed.129

Switching for a transaction: access to non-driver’s private data130

Driver Diana and passenger Peter are on the way to visit Peter’s friend Fred.131

Diana asks Peter to check Fred’s exact address. Fred has shared the address on132

Facebook, in a post that is visible to Peter but not to Diana.133

Diana is the current user of the Apertis system. However, accessing this infor-134

mation requires Peter’s private data (in this case, Facebook credentials).135

Switching for a transaction136

Peter selects a menu option labelled “Switch user…” or similar, chooses his own137

name from a list of users, and authenticates in some way if required. This138

switches the current user of the Apertis system from Diana to Peter, so that he139

can view his Facebook page and find Fred’s address. For the purposes of this140

particular use case, the initial state of Peter’s session is not significant (but see141

subsequent scenarios for situations where it does matter).142

Transferring selected data143

Peter should be able to select Fred’s address and set it as the satnav destination,144

without leaving Diana able to access his Facebook account in future.145

Obviousness of current user context146

If Diana and Peter have selected different user interface themes, it should be147

obvious on whose behalf the Apertis system is acting: it should use Peter’s148

theme if and only if it is working with Peter’s data.149

5

Core functionality not interrupted150

Certain core functions in the infotainment domain should not be interrupted by151

the user switch. For instance, if Diana was listening to locally stored media or152

to the radio, or using satnav to navigate to the city where Fred lives, this should153

not be interrupted. In particular, it must be possible for a navigation-related154

notification (such as an imminent turning or a speed limit change) to appear155

during the animated transition from Diana to Peter.156

Driver’s settings retained for core functionality157

It is important that the driver is not distracted. While Peter is using the158

Apertis system, certain core functions should remain linked to the driver’s user159

preferences, and should take precedence over what Peter is doing. For instance,160

if navigation is in the infotainment domain, it should continue to use Diana’s161

preferences to determine how far in advance to warn Diana about a turning.162

Alternative model, not recommended163

An alternative model that could be used for this transactional switching would164

be to use Peter’s user interface preferences (theme, etc.), but with all applica-165

tions still running as Diana, so that they have access to Diana’s private data166

but not to Peter’s. However, this model would not satisfy point a of this partic-167

ular use case, because Diana’s browser is either not logged in to Facebook, or168

logged in as Diana; and it is undesirable to require Peter to enter his Facebook169

password into Diana’s browser. It also does not satisfy point c: we feel that170

using Peter’s UI theme for Diana’s browser would mislead Peter into believing171

that this browser is running on his behalf, not Diana’s.172

Cancelling the transaction173

Assume that the preconditions and events of use case Switching for a transaction:174

access to non-driver’s private data have occurred. While trying to find Fred’s175

address, Peter is distracted (perhaps by a call on a phone not connected with176

the car) and does not continue to interact with the HMI.177

Driver regains control of Apertis system178

Because some functions of the Apertis system are driver-focused, it must be179

easy for Diana to revert to her preferred configuration. If Peter’s use of the180

situation is viewed as a “transaction”, then Diana reclaiming the system can be181

viewed as “aborting” or “rolling back” the transaction.182

This could occur either via a timer (when Peter stops interacting with the HMI183

for some arbitrary length of time, control returns to Diana) or via explicit action184

from either Peter or Diana (a menu option or touchscreen gesture).185

6

Diana’s “last-used” state is restored186

The foreground application, the set of background applications, and all of their187

states should be identical to how they were at the beginning of Switching for188

a transaction: access to non-driver’s private data. It is as if the “transaction”189

had never happened.190

Comments: Returning to the last-used state is important for a variant of this191

use-case: if Diana accidentally initiates user-switching, then cancels the action,192

this should not result in state being lost.193

Automatically switching via a timer could lead to undesired results, and should194

be deployed with care: for instance, if Peter has left a photo of Fred’s house195

displayed on the screen to help Diana to identify where to park, but has not196

explicitly used some “send to user…” action to “complete the transaction” by197

explicitly sending that content back to Diana, then it is undesirable for the198

system to switch back to Diana’s context if that would mean not displaying199

that photo.200

As a result, we recommend that user-switching should be via an explicit action,201

not via a timer. One possible compromise would be for a timer to trigger a202

notification that effectively asks “are you still there?”, offering actions “switch203

back to Diana” and “stay as Peter”.204

Switching user, maintaining state – web205

Driver Diana starts to look for information on a web page, then asks the passen-206

ger Peter to take over so that she can concentrate on driving. Peter wishes to207

authenticate as himself (as in Switching for a transaction: access to non-driver’s208

private data) so that he can use his own display preferences, bookmarks, etc.209

State transfer210

Peter selects a menu option in Diana’s web browser labelled “Send to…” or simi-211

lar, or uses a touchscreen gesture with the same effect. He chooses his own name212

from a list of users, and authenticates as himself. After Peter authenticates, the213

browser remains open in Peter’s session, and it displays the same web page that214

Diana was looking at.215

Comments: The user interface design for this requires some care to set up the216

appropriate privacy expectations: if the action was phrased more like “switch217

user” rather than “send to”, this would risk users unintentionally sharing private218

state, leading to a loss of confidence in the system.219

Transfer back220

Peter finds the desired information and selects the “Send to…” option again.221

The browser remains visible in Diana’s session, displaying the same web page222

that Peter was looking at.223

7

Comments: This use-case has privacy concerns due to the unclear security model224

that has evolved over time for the Web, and must be handled carefully. To225

fulfill the use case, the state that is transferred must include the web page’s226

URL and/or its content. In either case this can lead to a poor UX or a security227

vulnerability if mishandled, even taking into account that Peter can already see228

the contents of Diana’s screen:229

• If the state transfer is done by URL, suppose Diana is currently looking at230

a page for which Peter does not have the necessary credentials, for instance231

a private Google+ post from someone who is not Peter’s friend. In this232

case, the first thing Peter will see is a “permission denied” message, which233

is not a friendly user experience.234

• If the state transfer is done by URL, suppose Diana is currently looking235

at a page whose URL is itself sensitive, for instance a Google Docs “share-236

able URL” that contains its own authentication token. In this case, by237

retrieving the URL from browser history, Peter now has perpetual access238

to edit that document, which was not intended by Diana and could be239

characterized as a security flaw. This could be mitigated by careful user240

interface design, for instance choosing a verb with implications of “send”241

or “share”.242

• If the state transfer is done by content, suppose Diana is currently looking243

at a page whose hidden content is sensitive, for instance one that contains244

an authentication token to act on Diana’s behalf in an embedded form.245

In this case, by retrieving the content from browser cache, Peter now has246

access to that authentication token, which once again was not intended247

by Diana. Again, this could be mitigated by careful UI design.248

• If the state is transferred back to Diana (point b), there is an equivalent249

of each of those issues, with the roles reversed.250

As a result of the issues described, Collabora recommends being careful to set251

privacy expectations via UI design.252

Alternative model253

The alternative model described in Alternative model would avoid any privacy254

concerns, but does inherit the same issues as in and is not recommended.255

Switching user, maintaining state – music256

In a situation similar to the scenarios above, driver Diana starts to look for a257

particular song in the media library, then asks passenger Peter to take over so258

that she can concentrate on driving. Assume that Peter knows the desired song259

is in one of his playlists.260

Peter’s playlists are available261

8

Peter should be able to use his own playlists to find the song. There are two262

ways this could work, depending whether playlists are considered to be private263

or merely user-specific (see the Requirements section of the Multiuser Design264

document).265

If playlists are considered to be private, Peter must authenticate and switch266

to his own user context, as in scenarios Switching for a transaction: access to267

non-driver’s private data and Switching user, maintaining state – web, to locate268

his own playlist.269

If playlists are not considered to be private, Peter may either switch to his own270

user context, or locate the playlist while remaining in Diana’s configuration as271

in Passenger acts on behalf of driver access to drivers private data (for instance,272

the music player could show an unobtrusive “Peter’s playlists” folder alongside273

Diana’s own playlists).274

Peter’s HMI configuration is available275

To minimize frustration, Peter should be able to use his own configuration/”look276

& feel” for the media player to find that song, not Diana’s unfamiliar configu-277

ration.278

In practice, whether Peter will actually switch users in order to do this seems279

likely to depend on which he finds more irritating – using an unfamiliar user280

interface, or authenticating to switch user? – and on whether he intends to do281

other things “as himself” after finding the song. Remaining in Diana’s configu-282

ration is covered by Passenger acts on behalf of driver access to drivers private283

data, so we assume here that he does switch.284

Active app remains active285

The media player should still be the active app after Peter has switched to his286

own user context. The other apps that were running last time Peter used the287

car are not started.288

Non-private state is transferred289

If Peter does switch to his own user context, the state in which Diana was290

viewing the media library browser (e.g. currently viewed album) is preserved.291

Non-private state can be transferred back to Diana292

Peter finds the appropriate playlist, queues the song for playing and stops using293

the Apertis system. If he opts to use a similar “send…” option to return control294

of the Apertis system (as in scenario Switching user, maintaining state – web),295

the state in which Peter was viewing the media library browser is preserved,296

i.e. the playlist remains displayed. If he merely switches back (“cancelling” the297

transaction as in scenario Cancelling the transaction), the media player returns298

to the state that was saved as part of Diana’s session during point a.299

9

Alternative model:300

The alternative model described in Alternative model would naturally satisfy301

points b, c, d and e, but would not satisfy point a unless playlists are not302

considered to be private.303

Switching user, maintaining state – unknown app304

In a situation similar to Switching for a transaction: access to non-driver’s305

private data, driver Diana starts to look for a particular item in an arbitrary306

third-party app not specifically known to the system (e.g. a restaurant guide),307

then asks passenger Peter to take over.308

Switching user309

Suppose Peter knows that the desired restaurant is saved in his favourites, or310

believes that it would be easier to find in his user interface configuration. He311

should be able to authenticate and use his own configuration to find it.312

Active app remains active313

The restaurant guide should still be the active app after Peter has switched to314

his own user context. Like Switching user, maintaining state – music, but unlike315

the “user switching” scenario described in the Multiuser Design document, the316

other apps that were running last time Peter used the car are not started.317

Non-private and transient state is transferred318

Suppose Diana has got part way through finding the desired restaurant, and has319

narrowed down search results to the correct city. Peter should not be required320

to to repeat that process: the first thing he sees after login should be the same321

search results. If the user interface is designed to set the expectation that state322

will be transferred, using words such as “send” or “share”, then the amount of323

state that can be transferred without violating that expectation is greater.324

Private state is not transferred325

Because third-party apps could do anything, and the level of privacy of the data326

they deal with will vary greatly, it should also be possible for the app developer327

to avoid transferring all of its state between users. For instance, if Diana is328

logged-in to the restaurant guide app so that she can submit reviews, her login329

credentials must not be transferred to Peter.330

Explicitly returning state transfers it back331

If Peter “sends back” the state in which he was viewing the restaurant guide,332

similar to scenario Switching user, maintaining state – web, then that state is333

seen in Diana’s instance of the app.334

10

Cancelling the transaction restores previous state335

If Peter merely cancels the transaction and lets the system return to Diana,336

similar to Cancelling the transaction, then the state in which the app was saved337

before point a is restored.338

Alternative model:339

The alternative model described in Alternative model would naturally satisfy340

all these points except the first half of the first, unless favourite restaurants are341

not considered to be private.342

App declines to transfer state343

Suppose a current user Alice (who could either be the driver or passenger, there344

is no distinction in this use case) is using the Apertis system under her own user345

context. She is using a third-party app whose designer does not consider it to346

be appropriate to transfer any state to another user under any circumstances,347

for example a saved-password manager or an online banking app.348

Suppose Alice attempts to transfer state to another user Bob, as in Switching for349

a transaction: access to non-driver’s private data, Switching user, maintaining350

state – web etc.351

State transfer does not occur352

In this particular app, there is no state that would be appropriate to transfer to353

Bob. The user switch should not occur: for example, this could be implemented354

by displaying a notification instead of starting the switching process, or by355

putting an explanatory message where the list of possible users would normally356

appear. If the UX design is such that apps normally have a “send to…” menu357

option or button, it could appear disabled, or not be present at all.358

However, if sending to another user is done via a touch gesture, there is no direct359

equivalent of a disabled option. In particular, touch gestures should always have360

visual feedback, whether successful or not (similar to the way scrolling is often361

made to “bounce” at the end of the scrollable range). This is so that the user362

can distinguish between an unrecognized gesture, and a recognized gesture that363

did not result in an action in this specific case.364

Comment: this does not arise when cancelling a transaction as in Cancelling the365

transaction, because that action does not transfer state in any case.366

Switching user, maintaining state – missing app367

Similar to Switching user, maintaining state – unknown app, driver Diana starts368

a restaurant guide app, then asks Peter to take over. This time, suppose that369

Peter has not installed the restaurant guide, so the system will not be able to370

reproduce the current state for Peter.371

11

Impossible state transfer is not offered372

Similar to the previous scenario, the system should not offer the ability to send373

state to Peter.374

One possible implementation would be to avoid displaying a “send to user…”375

control in applications that are not installed for any other users, and to avoid376

listing Peter in the menu of possible users if he does not have the application.377

This has the disadvantage that in a system with three or more users, it could378

become non-obvious why some applications display that control and some do379

not, and why some users do not always appear in the menus.380

Alternative design381

another design that was considered is to run the app anyway, on the basis that382

it is in fact already installed on the system. However, this undermines the383

abstraction that each user has their own collection of apps. It also does not384

address the issue that the app might require accepting a EULA, approving a385

request for special OS permissions (access to GPS, etc.) or similar actions,386

which Peter has not done.387

Alternative design388

a third design that was considered is to present a choice between “just switch389

user to Peter” (which would restore his last-used state) and “don’t switch”.390

However, presenting the driver with a distracting prompt/question is undesired.391

Alternative design392

a fourth possibility is to switch to Peter, with the initial state in Peter’s ses-393

sion automatically opening the app installation procedure. If Peter chooses to394

install the relevant app, the state transferred from Diana should be inserted395

into the “newly installed” app. If Peter does not install the relevant app (for396

example because he does not agree to an EULA or OS permissions request), the397

transaction should be cancelled (as in Cancelling the transaction).398

Comments: as with the previous scenario, this scenario cannot occur when399

cancelling a transaction as in Cancelling the transaction, because that action400

does not transfer state in any case.401

Technical considerations402

The use case scenarios described above impact on several design decisions which403

may lead to technical challenges.404

The most important of all is the implication that most of the state, including405

applications, remains the same after a user switch.406

One possible approach is that the application remains running through a user407

switch and simply loads the private data of the new user.408

12

As noted in the more general Multiuser design document, implementing such a409

feature would require doing away with the separation of privileges provided by410

using one UNIX uid (user account ID) and one X or Wayland session per user,411

pushing all of the burden of authorization and tracking states for each user onto412

the applications. The complexity for application authors could be alleviated413

by providing some common high level APIs, but even in that case it would all414

be new, untested code. It would also put too much trust on the applications415

themselves, which would each be treated as a security boundary in this model;416

it is highly likely that some applications would mishandle user checks, allowing417

data to leak from one user session to the other.418

For these reasons, Collabora does not recommend this approach; instead, as419

in the more general Multiuser design document, we recommend that each user420

is represented by a separate UNIX uid, with all state transfer between users421

mediated by system services.422

Furthermore, we believe it is important to consider a number of trade-offs re-423

garding the desired functionality and the technical viability of the solution. The424

recommendations below try to strike a balance between ease of use, complexity425

for the application developer, stability and security.426

Approach427

This chapter goes over each of the requirements presenting the trade-offs Col-428

labora feels are necessary and proposing technical solutions to approximate as429

much as possible the desired user experience.430

Multiple users should be able to use the system, though not concur-431

rently432

The general approach Collabora recommends is adopting the usual approach433

with one UNIX uid per user, similar to the approach used for desktop and434

laptop systems.435

In most GNU/Linux distributions a user switch is performed by running a sec-436

ond instance of the X server and starting a second session with the appropriate437

uid, after which subsequent switching between the same users is simply a switch438

between those two X servers (the so-called “fast user switching” model, described439

in more detail in the Multiuser design document).440

A similar approach could be adopted for Apertis, but it would most certainly441

lead to memory pressure very quickly. For this reason Collabora believes the442

best way to implement user switching is by closing down the whole session of the443

current user, saving applications’ states while doing so, and only then starting444

the session for the other user. This is equivalent to the procedure used in most445

GNU/Linux distributions for a “log out” operation followed by a new login, but446

with the addition of a “save state” step before closing each application; it is also447

very similar to switching between user accounts on Android devices.448

13

Potential for concurrent users as a future enhancement449

One option that can be considered is to provide additional hardware resources450

in systems shipping for premium segment cars, such as doubling the available451

RAM, for instance. This would help with memory pressure and make the ap-452

proach involving two X servers an achievable goal, with the caveats discussed453

below.454

CPU usage, for instance, could become a problem and degrade the performance455

experienced by the second user if the programs running on the first user’s session456

are kept running. One possible solution for this is a freeze/thaw approach in457

which the first user’s applications remain present in memory, but their execution458

is paused until the first user’s session is resumed.459

If the first user’s session is not frozen completely, then services running outside460

the user sessions, such as the media player (see Switching users should not461

disturb some of the core functionality such as music playing below), would462

need to deal with the fact that there are now potentially two controlling user463

interfaces and handle multiple connections gracefully.464

Other system resources would also probably need to be regulated, such as muting465

applications of the first user so that a game running on their session would not466

interfere with a different game running on the second user’s session. Bandwidth467

regulation may become more complex, as well, to ensure no application from468

the first user interferes with streaming being performed inside the second user’s469

session, and there are implications that need to be considered if the first user’s470

phone is being used for Internet connection and has a metered data plan that471

B will now be using.472

Switching users should not disturb some of the core functionality,473

such as music playing474

This kind of cross-session functionality points to two probable design decisions.475

The first is that at least some of the data used by the various users should be476

shared; for example, music should probably be stored in a shared repository477

rather than in a user’s private storage area.478

The second is that the application that performs the actual playing must per-479

sist. There are two major options here, from which a concrete recommendation480

has not yet been chosen; depending on other requirements, the various “core”481

components do not necessarily all need to take the same solution.482

• It could be a system service (as defined by the Multiuser Design document)483

rather than a regular user-level application. That means it will be executed484

outside the user session, and be controlled by the user interface via D-485

Bus or a similar inter-process communication mechanism; this naturally486

results in its state, such as the list of tracks currently queued, being shared487

between all users. The relevant user interfaces in each user’s session could488

all communicate with the same system service.489

14

• It could be a user service running on behalf of the driver, which is flagged490

not to be terminated during user-switching, and communicates with the491

users via notifications.492

Other “core” services that need to span across multiple user sessions, such as493

navigation (if present in the Apertis domain), could follow a similar design. For494

example, the oFono service used for telephony is already a system service, so495

taking the “system service” option for that is a natural approach.496

If the system service needs to distinguish between users and act on behalf of497

a specific user in response to their requests, it is important to note that this498

results in it being part of the TCB (trusted computing base) responsible for499

enforcing separation between users. Such services should be checked to ensure500

that they do not violate the system’s intended security model.501

When the user starts the system they should find the same applica-502

tions they had left open at shutdown, and in the same state503

This topic is discussed in the Multiuser and Applications design documents.504

The only aspect directly relevant to this particular document is that the same505

“save state” step that would be done during shutdown should be performed when506

switching away from a user, so that the saved state can be reloaded for use cases507

such as scenario Cancelling the transaction.508

When switching users, open applications must remain open509

This requirement exists to enable use cases in which the driver asks a passen-510

ger who is also a user of the system to perform some task (Switching user,511

maintaining state – web, Switching user, maintaining state – music, Switching512

user, maintaining state – unknown app and Switching user, maintaining state513

– missing app are examples of this category). This passenger would log in, but514

at least part of the state of the driver’s session would remain.515

We see three possible ways to satisfy these use cases:516

• Transfer the state of all apps from the driver’s session to the new user’s517

session518

• Transfer the state of the single foreground app from the driver to the new519

user520

• Do not transfer any state521

In some use cases such as Cancelling the transaction and App declines to transfer522

state, having the same applications open after a switch is not a desirable user523

experience. It is not necessarily true that the user would like to use, for instance,524

the browser if the previous user had it open. It’s also not clear that the currently525

open browser tabs are necessarily interesting to the new user, particularly if they526

will “overwrite” the new user’s saved browser tabs from their last session.527

15

Finally, the privacy implications of implicitly transferring state are considerable,528

with significant potential for “over-sharing”; this could cause users to lose confi-529

dence in the system and avoid using it for personal data, reducing its usefulness.530

Our recommendation is that each application should have a way to indicate to531

the operating system whether it is able and willing to send (partial or full) state532

to another user’s instance of the same application. If it is, the HMI can display533

a “send to other user” option for that application; if the application is such that534

state transfer is unsafe or never useful, or if it simply does not support state535

transfer, then that option would appear disabled (greyed-out) or not appear at536

all.537

The actual state transfer would be similar to the state saving mechanism that538

is already needed for save/restore functionality (as discussed in the Preferences539

and Persistence design document2, and more briefly in the Multiuser3 and Appli-540

cations4 design documents), but placing state in memory or in an OS-supplied541

temporary directory instead of in the per-(user, app) data directory. We recom-542

mend that similar data formats and API conventions should be used, so that in543

trivial cases where there is no private state, the application’s implementations of544

“save state” and “send state” can call into the same common code. However, it545

should be presented as a separate, parallel API call, to encourage application au-546

thors to think about the amount of state transfer between users that is desired.547

Similarly, the “restore state” and “receive state” operations should be distinct,548

but follow similar enough conventions that they can share an implementation549

if that is what the application author wants.550

Optionally transferring the state of a single foreground app, with vendors en-551

couraged to design their HMIs to set appropriate privacy expectations for this552

action, seems a reasonable compromise between the convenience of transferring553

state when it is desired, and the disruption and privacy concerns of transferring554

state when it is not desired.555

We do not recommend the alternative model in which the superficial appearance556

of the passenger’s preferences is applied to processes that continue to run with557

access to the driver’s personal data (as outlined in Alternative model), since558

that approach seems likely to lead to users’ privacy expectations not matching559

the reality. This applies to both the driver’s privacy (it is not entirely obvious560

that the passenger can still access the driver’s private data) and the passenger’s561

privacy (for instance, it is not at all obvious that the passenger should not enter562

passwords into what appears to be “their” browser).563

2https://sjoerd.pages.apertis.org/apertis-website/designs/preferences-and-persistence/
3https://sjoerd.pages.apertis.org/apertis-website/concepts/multiuser/
4https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/

16

https://sjoerd.pages.apertis.org/apertis-website/designs/preferences-and-persistence/
https://sjoerd.pages.apertis.org/apertis-website/concepts/multiuser/
https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/
https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/
https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/
https://sjoerd.pages.apertis.org/apertis-website/designs/preferences-and-persistence/
https://sjoerd.pages.apertis.org/apertis-website/concepts/multiuser/
https://sjoerd.pages.apertis.org/apertis-website/concepts/applications/

Switching users shall be performed with a smooth transition, with no564

visual flickering565

This topic is discussed in the Multiuser Design document. We recommend the566

approach involving the first user’s session handing off to a separate system-level567

compositor, which in turn hands off to the second user’s session.568

User switching should not take more than 5 seconds569

This requirement puts pressure into how long the user session may take for570

closing down. An application that spends a lot of time writing state or doing571

some other processing, like an email client synchronizing its state with a slow572

IMAP server, may increase the amount of time required for completing the573

switch significantly. This means care must be taken in application development574

to not allow this.575

Other than that, Collabora believes the system components for user switching576

should be pretty fast and that the 5 seconds goal is achievable.577

Note that in a premium car system, depending on the additional amount of578

memory available, the applications would not necessarily really be closed down,579

so this requirement could more easily be achieved by simply freezing the existing580

session or not touching it at all.581

User data is private to each user582

By using the traditional “one UNIX uid per user” approach, each user will583

have its own home directory protected by the usual mechanisms, such as file584

ownership, user and group permissions, in addition to the AppArmor restrictions585

described in the Security Design document5. Note that usage of the UNIX home586

directory concept, in which a single directory has all of a given user’s files, is587

not in the plans for Apertis. Instead, each application will store its data in a588

directory named after the UNIX user account, and owned by the appropriate589

uid, but inside the application directory.590

More information about this can be found in the Applications design.591

However, some data will be shared592

The requirements state that optionally some data can be shared if it makes the593

problem more tractable. Collabora believe it’s a good idea to make installed594

applications and data such as the music library be shared. Making installed595

applications per-user makes application management much more complex, in-596

cluding possibly having to waste space by having two separate versions of the597

same application available.598

A custom view can still be provided for each user. The icons for applications599

may appear only if the user explicitly installs the application, which in this600

5https://sjoerd.pages.apertis.org/apertis-website/designs/security/

17

https://sjoerd.pages.apertis.org/apertis-website/designs/security/
https://sjoerd.pages.apertis.org/apertis-website/designs/security/

case would not cause a new download, just the addition of the icon to the user’s601

launcher. The same can go for other kinds of user interface aids such as playlists,602

providing the user with a way of picking the songs or videos they are interested603

in from the shared library.604

More information about this can be found in the Applications design.605

Removable devices are accessible to all users and all users can un-606

mount/eject them607

This requirement can be fully satisfied by the proposed approach. The mounting608

and unmounting of devices is a privileged operation that is mediated by system609

services already, so making it so that any user can mount and unmount devices610

no matter who mounted them in the first place is simply a matter of setting611

that up as the policy.612

Limiting customizability as a trade-off613

If the Apertis ends up being designed with no user switching or even no multi-614

user capabilities, then it might be desirable to consider limiting the customiz-615

ability of the system, so as to not burden drivers who seldom use the system616

that is customized by the main driver.617

As a general principle, the easier it is made to switch between users, the more618

customizability can be offered without it becoming a problem. One special case619

is that the mechanism to switch users should remain obvious and in a consistent620

location in all configurations and themes. Similarly, the user interface for driver-621

focused tasks, such as the icon to open satnav functionality, should remain622

consistent between configurations.623

If user-switching is absent or limited, Collabora believes that any customization624

that allows relocation of items and interface controls should be avoided. That625

means any configuration for the positions or visibility of menu items, application626

launchers, core user interface elements such as the status bar, the back button,627

and so on should not be allowed.628

Appearance customization, such as colour scheme, should not cause trouble for629

a casual user of the system trying to find their way. The same goes for features630

that allow organization of user data such as the creation of custom playlists631

or photo albums. However, configuration of fonts and font sizes can cause the632

core UI elements to change layout in ways that might be confusing, so allowing633

configuration for those needs to be considered carefully.634

Recommendations summary635

As discussed in Multiple users should be able to use the system though not636

concurrently, Collabora recommends having one UNIX user account ID (uid)637

per user. The first user to be registered in a new system must be able to perform638

18

administration tasks such as system updates, application installation, creation639

of new users and setting up permissions, as discussed in the main Multiuser640

Design document.641

At a conceptual level, user switching should be done by closing down the user642

session and starting the new user session, to avoid memory pressure. However,643

implementors should consider allowing the old session to run in parallel for a644

short time while applications are given a chance to save and exit. Running645

two user sessions in parallel for an extended period of time, to enable “fast646

user switching”, can be considered for premium cars with greater computing647

resources available.648

Services that need to stay running after a user switch should have their back-649

ground functionality split from their UIs, as discussed in section Switching users650

should not disturb some of the core functionality such as music playing; they651

can either run as a different UNIX user account ID – a “system service” – or652

be a specially flagged “user service” that is not terminated with the rest of the653

session.654

Collabora recommends against trying to have a login mode that moves the entire655

session state from the current user to the user that is logging in, as described656

in When switching users open applications must remain open. To satisfy use657

cases in which the current state of one user’s application is sent to another658

user’s instance of the same application, it would be sufficient to have that single659

application save and restore state, using a mode which omits private data from660

the state where necessary. It is not necessarily possible or desirable to implement661

this for every application, and care must be taken to set appropriate privacy662

expectations.663

Ways of having a smooth visual transition when switching users are discussed664

in the main Multiuser Design document. Collabora recommends the use of665

multiple Wayland compositors, with the first user’s session compositor hand-666

ing over control of the graphics device to a system compositor to perform the667

switch, which in turn hands over the graphics device to the second user’s session668

compositor.669

Collabora recommends in [this section][However, some data will be shared] that670

data for applications and media files be shared among users to avoid duplication,671

with custom views allowing per-user customization.672

19

	Terminology
	Requirements
	Assumptions
	Use-case scenarios
	Technical considerations

	Approach
	Multiple users should be able to use the system, though not concurrently
	Switching users should not disturb some of the core functionality, such as music playing
	When the user starts the system they should find the same applications they had left open at shutdown, and in the same state
	When switching users, open applications must remain open
	Switching users shall be performed with a smooth transition, with no visual flickering
	User switching should not take more than 5 seconds
	User data is private to each user
	Removable devices are accessible to all users and all users can unmount/eject them

	Limiting customizability as a trade-off
	Recommendations summary

