
Canterbury legacy application framework

Contents1

Flatpak . 22

Canterbury . 33

Comparison 34

Applications concept . 45

Application layout . 46

Application entry points . 47

Application metadata . 48

Bundle spec . 49

Permissions . 510

Preferences and persistence . 511

Containerisation . 512

Large data sharing . 513

Dialogs and notifications . 514

Launch applications and services . 615

Launch pre-configured default apps at start-up (Launcher / Global16

popup / Status Bar) . 617

AppArmor . 618

Headless agents . 719

System agents . 720

Multiple entry points . 821

Application manager D-Bus interface 822

Audio management . 823

Hard Keys . 924

Preference application launching . 925

Out-of-memory handling . 926

Bandwidth prioritization . 927

App store . 928

Manage launched application windows using the Window Manager . . 1029

Notifies application whether they are in background or foreground . . 1030

Maintain an application stack . 1031

Store Last User Mode (LUM) information periodically and restore32

LUM on start-up . 1033

Conclusions 1134

Apertis currently ships with a custom application framework based on the Can-35

terbury app manager which is in the process of being phased out in favor of36

upstream components like Flatpak, see the application framework1 document37

for more details.38

Flatpak and Canterbury cover the core tasks of an application framework:39

• packaging40

• distribution41

1https://sjoerd.pages.apertis.org/apertis-website/concepts/application-framework/

2

https://sjoerd.pages.apertis.org/apertis-website/concepts/application-framework/
https://sjoerd.pages.apertis.org/apertis-website/concepts/application-framework/

• sandboxing42

When Canterbury was designed Flatpak didn’t exist and the available technolo-43

gies were quite different from what is in today’s usage, so it’s now time to44

reconsider our approach.45

Flatpak46

• upstream, large community47

• mature, proven on the field48

• uses Linux containers to isolate the filesystem view from the application49

• sandbox based on Linux containers and seccomp50

• uses AppStream and .desktop files to encode metadata about the applica-51

tion52

• backed by OSTree53

• shared runtimes decouple libraries on the host from libraries depended by54

applications, changes on the host won’t break applications55

• deduplicates files across applications, runtimes and the host OSTree-based56

system57

• SDK runtimes decouple development from the host58

• growing IDE support (GNOME Builder, Eclipse)59

• standardized D-Bus based portals for privileged operations60

• transparent support for portals already available in the most widespread61

toolkits (Qt/GTK/etc.)62

• large userbase63

• available out-of-the-box on the most widespread distributions (De-64

bian/Ubuntu/Fedora/Red Hat/Suse/etc.)65

• well documented66

• additional permissions are managed through high level entries in the ap-67

plication manifest68

• sandboxed with seccomp69

• mature OTA mechanism for applications70

• user-facing app store available upstream71

• the upstream app-store, FlatHub, can be deployed for Apertis, or the72

experimental Magento app-store could be adapted73

• enables third-party applications (Sublime Text, Visual Studio Code, etc.)74

to be run on the SDK with no effort75

Canterbury76

• Apertis specific, no community77

• not proven on the field78

• pre-dates Linux containers availability, does not use them79

• sandbox based on AppArmor80

• uses AppStream and .desktop files to encode metadata about the applica-81

tion82

3

• backed by OSTree83

• applications use libraries from the host, no decoupling84

• no concept of runtimes85

• no deduplicaions86

• limited IDE support (Eclipse)87

• very sparsely documented88

• security constraints expressed via low-level AppArmor profiles, no higher-89

level permission system90

• no seccomp sandbox91

• OTA mechanism for applications and agents at the prototype stage (Bosch-92

only, not available in Apertis)93

• user-facing app store at the prototype stage (Bosch-only, not available in94

Apertis)95

• there’s an experimental Magento-based app-store, not currently available96

in Apertis97

Comparison98

Since Apertis is meant to adopt upstream solutions whenever possible it is nat-99

ural for us to adopt Flatpak, but to do so the gaps that need to be filled must100

be evaluated.101

The two systems are very different and for this reason no transparent compatibil-102

ity can be provided, but thanks to the modular approach in Apertis Canterbury103

can be kept available in the repositories even if the reference setup will use Flat-104

pak.105

Since the two systems share many underlying technologies (D-Bus, OSTree,106

etc.) their performance are comparable. The additional use of control groups107

in Flatpak doesn’t add any noticeable overhead. Flatpak consists of just an108

executable setting up the environment and does not require an always-running109

daemon as Canterbury does, so there may be a negligible memory saving.110

Applications concept111

The legacy Apertis application framework already defined the concept of appli-112

cation bundles. The new application framework defines the wanted format used113

for the bundle as being Flatpak.114

Application layout115

The application layout remains compatible with the legacy application frame-116

work, note that the layout is relative to the /app/ folder inside of the Flatpak.117

4

Application entry points118

As the entry points2 were defined using the standard specification from119

FreeDesktop.org, they remain compatible with the new Apertis application120

framework and are exposed by the flatpak executable to the system when121

necessary.122

Desktop file should be updated to use Flatpak instead of Canterbury to launch123

the application, e.g. replacing124

1 Exec=@bindir@/eye app-name @app_id@ play-mode stop url NULL

by125

1 Exec=flatpak run app-name @app_id@ play-mode stop url NULL

Application metadata126

The application metadata were specified using the AppStream FreeDesktop.org127

specification and remains the main metadata specification for Flatpak.128

Bundle spec129

The latest Canterbury application bundle specification has been largely based130

on the Flatpak one, in a initial effort to align Canterbury with recent upstream131

technologies:132

• the binary format is the exactly same;133

• in both cases AppStream is used for the bundle metadata;134

• entrypoints are defined with .desktop files both in Canterbury and Flat-135

pak;136

• installation paths differ since Canterbury requires an unique installation137

path while Flatpak relies on containers to put different contents on the138

same path for each application, but from a practical point of view the139

difference is purely cosmetic.140

Permissions141

No high level support for application permission has been implemented in Can-142

terbury, application access to resources was exclusively based on writing dedi-143

2https://sjoerd.pages.apertis.org/apertis-website/architecture/bundle-spec/#entry-points

5

https://sjoerd.pages.apertis.org/apertis-website/architecture/bundle-spec/#entry-points
https://sjoerd.pages.apertis.org/apertis-website/architecture/bundle-spec/#entry-points

cated AppArmor profiles3 for each applications and carefully reviewing them.144

Flatpak instead lets application authors specify in the application manifest a set145

of special high-level permissions. The Flatpak approach has been analysed in146

more detail in the original permissions4 document which already described the147

use-cases for the permissions mechanism in the context of the Apertis application148

framework.149

Preferences and persistence150

The Apertis application framework satisfies the requirements of the legacy ap-151

plication framework. The only missing part is that application rollback is not152

able to revert the user-data to a previous state.153

Containerisation154

Canterbury pre-dates the maturity of containerization in Linux (cgroups and155

namespaces) and it does not make use of it.156

Flatpak is instead heavily based on containers, providing much stronger isolation157

capabilities.158

Large data sharing159

The Apertis application framework allows to share data using the standard160

mechanisms as described by the FreeDesktop.org Desktop File specification.161

Any D-Bus enabled sharing service can be used when specifying the right in-162

terface in the Flatpak manifest. It is no more possible to register a service by163

putting a file into /var/lib/apertis_extensions/applications at installation time164

as the files are installed into a different path for each bundle.165

Dialogs and notifications166

The Apertis application framework is also using the Notification Specification5167

and allows to reuse the same interface without any breakage.168

The dialog abstraction for the legacy application framework has never been169

implemented as its design is subject to many questions.170

Launch applications and services171

As Flatpak is well-integrated into existing environments and uses the same tech-172

nology and protocols for its foundations, there is no expected problems with173

Flatpak here.174

3https://sjoerd.pages.apertis.org/apertis-website/architecture/bundle-spec/#apparmor-
profile

4https://sjoerd.pages.apertis.org/apertis-website/designs/permissions/
5https://people.gnome.org/~mccann/docs/notification-spec/notification-spec-latest.html

6

https://sjoerd.pages.apertis.org/apertis-website/architecture/bundle-spec/#apparmor-profile
https://sjoerd.pages.apertis.org/apertis-website/designs/permissions/
https://people.gnome.org/~mccann/docs/notification-spec/notification-spec-latest.html
https://sjoerd.pages.apertis.org/apertis-website/architecture/bundle-spec/#apparmor-profile
https://sjoerd.pages.apertis.org/apertis-website/architecture/bundle-spec/#apparmor-profile
https://sjoerd.pages.apertis.org/apertis-website/designs/permissions/
https://people.gnome.org/~mccann/docs/notification-spec/notification-spec-latest.html

Launch pre-configured default apps at start-up (Launcher175

/ Global popup / Status Bar)176

The work has already beeing started as show by this upstream request6 for this177

feature making it a small gap to fill.178

AppArmor179

Currently Apertis depends heavily on AppArmor to constrain services and ap-180

plications: it is used to restrict filesystem access and mutually authenticate181

applications in a secure way when communicating over D-Bus.182

AppArmor is currently used in Apertis for two different purposes:183

• access constraints184

• secure identification of D-Bus peers185

While Flatpak has no support for AppArmor out of the box and adding it is186

not on the roadmap so far, the first use case is already covered by the use of187

Linux cgroups and namespaces which provide more flexibility than AppArmor.188

Flatpak also ships a D-Bus proxy to manage access policies at the D-Bus level,189

since that needs a finer control than cgroups and namespaces can provide.190

The higher-level access constraints implemented by Flatpak are much easier and191

secure to be used by application authors than the low-level AppArmor policy192

language currently used by Apertis. In that sense, the adoption of Flatpak would193

be aligned to the plan to provide an higher-level access constraints mechanism194

to application authors and shield them from the AppArmor policy language.195

Flatpak also includes the concept of “portals” to provide restricted access to196

resources to unprivileged applications, either by applying system-specific policies197

or by requiring user interaction. For instance, applications don’t have access to198

user files, and file opening is handled via a privileged portal that ensure that199

applications can only access files users have given their consent to.200

The second use of AppArmor is something very few applications at the moment201

use, and portals seem well suited to replace its known usages:202

• Canterbury itself uses it to control applications: this is managed by Flat-203

pak by using cgroups204

• Newport (download manager) uses it to securely identify its clients: creat-205

ing a dedicated Flatpak portal would address the use-case with no reliance206

on AppArmor207

• Frome (magento app-store client) uses it to only let the org.apertis.Mildenhall.Setting208

system application talk to it: a dedicated Flatpak portal seem appropriate209

here as well210

6https://github.com/flatpak/flatpak/issues/118

7

https://github.com/flatpak/flatpak/issues/118
https://github.com/flatpak/flatpak/issues/118

• Beckfoot (network management service) uses it to talk with org.apertis.Mildenhall.StatusBar,211

but Beckfoot itself has been declared obsolete long ago in {T3626} and212

the existing org.freedesktop.portal.Notification7 could be used instead.213

Headless agents214

Flatpak focuses on graphical application on the user session bus: nothing in its215

design prevents its usage for headless agents and some testing didn’t show any216

significant issue, but some rough edges are expected.217

Some one-time effort may be needed to consolidate this use-case in Flatpak.218

System agents219

Canterbury can only manage user-level applications and agents, and it doesn’t220

currently have support for agents meant to be accessed on the system bus by221

different users.222

Flatpak is not suited for system agents as well and focuses on the user session.223

Upstream explicitly considers system agents a non-usecase and working in this224

direction would produce a significant delta that would significantly impact the225

maintenance burden.226

Flatpak apps run in an environment that can never exercise capabilities227

(CAP_SYS_ADMIN, CAP_NET_ADMIN etc.) or transition between uids, so some system228

services will not be possible to implement. System services that could run as229

an unprivileged system-level uid and don’t do anything inherently privileged,230

like downloading files and putting them in a centralized location where all231

users can access them, should work. System services that need to be root to do232

inherently privileged things, like ConnMan/BlueZ, won’t.233

systemd “portable services”, perhaps deployed using OSTree, might be a rea-234

sonable solution for system agents. They are very new and not yet considered235

stable, but are specifically meant for this purpose.236

Multiple entry points237

Canterbury supports multiple entry points in a single app-bundle, and Flatpak238

should support more than one desktop file which, as in Canterbury, are the239

implementation of entry points.240

Application manager D-Bus interface241

Canterbury exports an obsoleted D-Bus interface with a set of largely unrelated242

methods to:243

7https://flatpak.github.io/xdg-desktop-portal/portal-docs.html#gdbus-org.freedesktop.
portal.Notification

8

https://flatpak.github.io/xdg-desktop-portal/portal-docs.html#gdbus-org.freedesktop.portal.Notification
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html#gdbus-org.freedesktop.portal.Notification
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html#gdbus-org.freedesktop.portal.Notification

• let application register themselves244

• communicate to applications their new application state (show, hide,245

paused, off)246

• hide global popups247

• get the currently active application248

• get the application that is currently using the audio source249

• find out if the currently active application needs an Internet connection250

Tracking the application that is currently “active” and hiding popups are tasks251

that should be handled by the compositor. The other interfaces are considered252

problematic as well.253

Canterbury-core, the version of Canterbury for headless systems, already doesn’t254

ship the application manager interface so there’s no contingent need to reimple-255

ment it.256

Audio management257

The legacy application framework was built around PulseAudio.258

Canterbury provides a custom audio manager which was already considered ob-259

soleted and a different design8 was proposed some time ago on top of PulseAu-260

dio.261

With the need of more containment into the framework, the Apertis application262

framework is meant to use PipeWire as a replacement for PulseAudio. The263

intent for PipeWire is to be a drop-in replacement for PulseAudio during the264

transition period. PipeWire also provides a sink and source GStreamer element265

to replace their PulseAudio conterparts.266

PipeWire is designed to let an external policy engine dictate how the audio267

should be routed and also provide proper security controls to restrict untrusted268

applications: for this reason AGL plans to use it as the foundation for their269

upcoming audio management solution, and Collabora is involved to ensure the270

embedded use-cases are covered.271

An alternative which is largely in use is the GENIVI AudioManager, which can272

be used with Flatpak as well.273

Canterbury-core, the version of Canterbury for headless systems, already doesn’t274

ship the audio manager so there’s no contingent need to reimplement it.275

Hard Keys276

Canterbury provides a D-Bus interface for handling hard-keys by communicating277

with the compositor over private interfaces. This is considered obsolete and278

hard-key handling should happen in the compositor directly.279

8https://sjoerd.pages.apertis.org/apertis-website/concepts/audio-management/

9

https://sjoerd.pages.apertis.org/apertis-website/concepts/audio-management/
https://sjoerd.pages.apertis.org/apertis-website/concepts/audio-management/

Canterbury-core, the version of Canterbury for headless systems, already doesn’t280

ship the hard key interface so there’s no contingent need to reimplement it.281

Preference application launching282

Canterbury provides a D-Bus interface to let applications launch the preference283

manager to edit their preferences rather than providing their own interface.284

This also requires support in the preference manager, which is not currently285

implemented.286

Canterbury-core, the version of Canterbury for headless systems, already doesn’t287

ship the preference launcher interface so there’s no contingent need to reimple-288

ment it.289

Out-of-memory handling290

When memory pressure is detected Canterbury tries to kill applications not291

currently visible. The private API between Canterbury and the Mildenhall292

compositor and the implementation were already known to be problematic and293

were considered to be needing a significant rework in any case, possibly to move294

them to a dedicated module.295

The module dedicated to the prioritization of applications in case of memory296

pressure can then be implemented to work with Flatpak applications seamlessy.297

Bandwidth prioritization298

Canterbury provides a experimental bandwidth prioritization system that is299

known to be problematic and has been considered obsoleted, see {T4043} for300

details. No similar mechanism is available in Flatpak.301

App store302

There’s an experimental Magento-based app-store for Canterbury, but it is not303

yet available in Apertis. Flatpak has its own upstream app store, FlatHub,304

which is Open Source and can be self-hosted. It doesn’t currently implement305

payments in any form. Possible options here are either publishing the Magento-306

based code and adapting it to work with Flatpak with a limited amount of307

changes but higher maintenance costs, or contribute on the implementation of308

payment methods on FlatHub, with an higher one-time cost but likely lower309

on-going maintenance requirements.310

Manage launched application windows using the Window311

Manager312

This was deprecated since Apertis 17.09. Canterbury uses private interfaces313

with the compositor to:314

10

• show/hide splashscreens, but WM should be able to display splashscreens315

on its own without involving the application manager316

• learn which application is being displayed to manage the “back” stack,317

but the WM is better positioned to handle the “back” stack on its own318

• inform the WM that the Last User Mode is being set up, but it appears319

that the compositor takes no special action in that case320

Notifies application whether they are in background or321

foreground322

This is not part of canterbury-core and has been deprecated since Apertis 17.09.323

In a single fullscreen window scenario this can be handled by tracking whether324

the application has the focus or not. In the case multiple applications are visible325

at the same time, such as in the normal desktop case, the “background” status326

can be misleading since applications can still be partially visible. Wayland327

provides the frame clock to throttle the rendering of application windows which328

are not visible.329

Maintain an application stack330

Canterbury maintains a stack of applications to provide an Android-like back331

button. This feature should be implemented by the compositor to avoid layering332

violation. This is not part of canterbury-core as well and deprecated since333

Apertis 17.09.334

Store Last User Mode (LUM) information periodically and335

restore LUM on start-up336

This is not part of canterbury-core, and was deprecated since 17.09. Canterbury337

saves the currently running applications, “back” stack and the selected audio338

output in order to restore them on reboot.339

The compositor should handle the saving and restoration of the application340

stack and the audio manager should save and restore the selected audio output341

without involving the application manager.342

Conclusions343

• No major gaps have been identified between Canterbury and Flatpak344

• Flatpak has an very active upstream community and widespread adoption345

• Most of the Canterbury APIs not related to app-management have been346

formally deprecated since Apertis 17.09347

• Providing compatibility between the two would be a very big undertaking348

with unclear benefits, so it’s actively discouraged and existing applications349

needs to be ported explicitly350

11

• HMI applications will need to be reimplemented in any case as Mildenhall351

is not a viable solution for product teams352

• The Canterbury application framework will remain available in Apertis353

as an option at least until the new application framework has matured354

enough and reference applications are available for it, and product teams355

will be able to choose one or the other depending on their specific needs356

12

	Flatpak
	Canterbury
	Comparison
	Applications concept
	Application layout
	Application entry points
	Application metadata
	Bundle spec
	Permissions
	Preferences and persistence
	Containerisation
	Large data sharing
	Dialogs and notifications
	Launch applications and services
	Launch pre-configured default apps at start-up (Launcher / Global popup / Status Bar)
	AppArmor
	Headless agents
	System agents
	Multiple entry points
	Application manager D-Bus interface
	Audio management
	Hard Keys
	Preference application launching
	Out-of-memory handling
	Bandwidth prioritization
	App store
	Manage launched application windows using the Window Manager
	Notifies application whether they are in background or foreground
	Maintain an application stack
	Store Last User Mode (LUM) information periodically and restore LUM on start-up

	Conclusions

